Network Working Group S. Alexander Request for Comments: 2132 Silicon Graphics, Inc. Obsoletes: 1533 R. Droms Category: Standards Track Bucknell University March 1997
DHCP Options and BOOTP Vendor Extensions
Status of this memo
This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.
Abstract
The Dynamic Host Configuration Protocol (DHCP) [1] provides a framework for passing configuration information to hosts on a TCP/IP network. Configuration parameters and other control information are carried in tagged data items that are stored in the 'options' field of the DHCP message. The data items themselves are also called "options."
This document specifies the current set of DHCP options. Future options will be specified in separate RFCs. The current list of valid options is also available in ftp://ftp.isi.edu/in- notes/iana/assignments [22].
All of the vendor information extensions defined in RFC 1497 [2] may be used as DHCP options. The definitions given in RFC 1497 are included in this document, which supersedes RFC 1497. All of the DHCP options defined in this document, except for those specific to DHCP as defined in section 9, may be used as BOOTP vendor information extensions.
Table of Contents
1. Introduction .............................................. 2 2. BOOTP Extension/DHCP Option Field Format .................. 4 3.RFC 1497 Vendor Extensions ................................ 5 4. IP Layer Parameters per Host .............................. 11 5. IP Layer Parameters per Interface ........................ 13 6. Link Layer Parameters per Interface ....................... 16 7. TCP Parameters ............................................ 17 8. Application and Service Parameters ........................ 18 9. DHCP Extensions ........................................... 25
Alexander & Droms Standards Track [Page 1]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
This document specifies options for use with both the Dynamic Host Configuration Protocol and the Bootstrap Protocol.
The full description of DHCP packet formats may be found in the DHCP specification document [1], and the full description of BOOTP packet formats may be found in the BOOTP specification document [3]. This document defines the format of information in the last field of DHCP packets ('options') and of BOOTP packets ('vend'). The remainder of this section defines a generalized use of this area for giving information useful to a wide class of machines, operating systems and configurations. Sites with a single DHCP or BOOTP server that is shared among heterogeneous clients may choose to define other, site- specific formats for the use of the 'options' field.
Section 2 of this memo describes the formats of DHCP options and BOOTP vendor extensions. Section 3 describes options defined in previous documents for use with BOOTP (all may also be used with DHCP). Sections 4-8 define new options intended for use with both DHCP and BOOTP. 9">Section 9 defines options used only in DHCP.
References further describing most of the options defined in sections 2-6 can be found in 12">section 12. The use of the options defined in 9">section 9 is described in the DHCP specification [1].
Information on registering new options is contained in section 10.
This document updates the definition of DHCP/BOOTP options that appears in RFC1533. The classing mechanism has been extended to include vendor classes as described in section 8.4 and 9.13. The new procedure for defining new DHCP/BOOTP options in described in section 10. Several new options, including NIS+ domain and servers, Mobile IP home agent, SMTP server, TFTP server and Bootfile server, have been added. Text giving definitions used throughout the document has been added in section 1.1. Text emphasizing the need for uniqueness of client-identifiers has been added to section 9.14.
Alexander & Droms Standards Track [Page 2]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
Throughout this document, the words that are used to define the significance of particular requirements are capitalized. These words are:
o "MUST"
This word or the adjective "REQUIRED" means that the item is an absolute requirement of this specification.
o "MUST NOT"
This phrase means that the item is an absolute prohibition of this specification.
o "SHOULD"
This word or the adjective "RECOMMENDED" means that there may exist valid reasons in particular circumstances to ignore this item, but the full implications should be understood and the case carefully weighed before choosing a different course.
o "SHOULD NOT"
This phrase means that there may exist valid reasons in particular circumstances when the listed behavior is acceptable or even useful, but the full implications should be understood and the case carefully weighed before implementing any behavior described with this label.
o "MAY"
This word or the adjective "OPTIONAL" means that this item is truly optional. One vendor may choose to include the item because a particular marketplace requires it or because it enhances the product, for example; another vendor may omit the same item.
A DHCP client or "client" is an Internet host using DHCP to obtain configuration parameters such as a network address.
Alexander & Droms Standards Track [Page 3]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
o "DHCP server"
A DHCP server of "server"is an Internet host that returns configuration parameters to DHCP clients.
o "binding"
A binding is a collection of configuration parameters, including at least an IP address, associated with or "bound to" a DHCP client. Bindings are managed by DHCP servers.
DHCP options have the same format as the BOOTP 'vendor extensions' defined in RFC 1497 [2]. Options may be fixed length or variable length. All options begin with a tag octet, which uniquely identifies the option. Fixed-length options without data consist of only a tag octet. Only options 0 and 255 are fixed length. All other options are variable-length with a length octet following the tag octet. The value of the length octet does not include the two octets specifying the tag and length. The length octet is followed by "length" octets of data. Options containing NVT ASCII data SHOULD NOT include a trailing NULL; however, the receiver of such options MUST be prepared to delete trailing nulls if they exist. The receiver MUST NOT require that a trailing null be included in the data. In the case of some variable-length options the length field is a constant but must still be specified.
Any options defined subsequent to this document MUST contain a length octet even if the length is fixed or zero.
All multi-octet quantities are in network byte-order.
When used with BOOTP, the first four octets of the vendor information field have been assigned to the "magic cookie" (as suggested in RFC 951). This field identifies the mode in which the succeeding data is to be interpreted. The value of the magic cookie is the 4 octet dotted decimal 99.130.83.99 (or hexadecimal number 63.82.53.63) in network byte order.
All of the "vendor extensions" defined in RFC 1497 are also DHCP options.
Option codes 128 to 254 (decimal) are reserved for site-specific options.
Alexander & Droms Standards Track [Page 4]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
Except for the options in section 9, all options may be used with either DHCP or BOOTP.
Many of these options have their default values specified in other documents. In particular, RFC 1122 [4] specifies default values for most IP and TCP configuration parameters.
Many options supply one or more 32-bit IP address. Use of IP addresses rather than fully-qualified Domain Names (FQDNs) may make future renumbering of IP hosts more difficult. Use of these addresses is discouraged at sites that may require renumbering.
The time offset field specifies the offset of the client's subnet in seconds from Coordinated Universal Time (UTC). The offset is expressed as a two's complement 32-bit integer. A positive offset indicates a location east of the zero meridian and a negative offset indicates a location west of the zero meridian.
The code for the time offset option is 2, and its length is 4 octets.
Code Len Time Offset +-----+-----+-----+-----+-----+-----+ | 2 | 4 | n1 | n2 | n3 | n4 | +-----+-----+-----+-----+-----+-----+
The domain name server option specifies a list of Domain Name System (STD 13, RFC 1035 [8]) name servers available to the client. Servers SHOULD be listed in order of preference.
The code for the domain name server option is 6. The minimum length for this option is 4 octets, and the length MUST always be a multiple of 4.
This option specifies the name of the client. The name may or may not be qualified with the local domain name (see section 3.17 for the preferred way to retrieve the domain name). See RFC 1035 for character set restrictions.
The code for this option is 12, and its minimum length is 1.
Code Len Host Name +-----+-----+-----+-----+-----+-----+-----+-----+-- | 12 | n | h1 | h2 | h3 | h4 | h5 | h6 | ... +-----+-----+-----+-----+-----+-----+-----+-----+--
This option specifies the length in 512-octet blocks of the default boot image for the client. The file length is specified as an unsigned 16-bit integer.
The code for this option is 13, and its length is 2.
This option specifies the path-name of a file to which the client's core image should be dumped in the event the client crashes. The path is formatted as a character string consisting of characters from the NVT ASCII character set.
The code for this option is 14. Its minimum length is 1.
This option specifies the path-name that contains the client's root disk. The path is formatted as a character string consisting of characters from the NVT ASCII character set.
The code for this option is 17. Its minimum length is 1.
Code Len Root Disk Pathname +-----+-----+-----+-----+-----+-----+--- | 17 | n | n1 | n2 | n3 | n4 | ... +-----+-----+-----+-----+-----+-----+---
A string to specify a file, retrievable via TFTP, which contains information which can be interpreted in the same way as the 64-octet vendor-extension field within the BOOTP response, with the following exceptions:
- the length of the file is unconstrained; - all references to Tag 18 (i.e., instances of the BOOTP Extensions Path field) within the file are ignored.
Alexander & Droms Standards Track [Page 10]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
The code for this option is 18. Its minimum length is 1.
Code Len Extensions Pathname +-----+-----+-----+-----+-----+-----+--- | 18 | n | n1 | n2 | n3 | n4 | ... +-----+-----+-----+-----+-----+-----+---
This option specifies whether the client should configure its IP layer for packet forwarding. A value of 0 means disable IP forwarding, and a value of 1 means enable IP forwarding.
The code for this option is 19, and its length is 1.
Code Len Value +-----+-----+-----+ | 19 | 1 | 0/1 | +-----+-----+-----+
This option specifies whether the client should configure its IP layer to allow forwarding of datagrams with non-local source routes (see Section 3.3.5 of [4] for a discussion of this topic). A value of 0 means disallow forwarding of such datagrams, and a value of 1 means allow forwarding.
The code for this option is 20, and its length is 1.
Code Len Value +-----+-----+-----+ | 20 | 1 | 0/1 | +-----+-----+-----+
This option specifies policy filters for non-local source routing. The filters consist of a list of IP addresses and masks which specify destination/mask pairs with which to filter incoming source routes.
Any source routed datagram whose next-hop address does not match one of the filters should be discarded by the client.
Alexander & Droms Standards Track [Page 11]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
See [4] for further information.
The code for this option is 21. The minimum length of this option is 8, and the length MUST be a multiple of 8.
This option specifies the maximum size datagram that the client should be prepared to reassemble. The size is specified as a 16-bit unsigned integer. The minimum value legal value is 576.
The code for this option is 22, and its length is 2.
This option specifies the default time-to-live that the client should use on outgoing datagrams. The TTL is specified as an octet with a value between 1 and 255.
The code for this option is 23, and its length is 1.
This option specifies the timeout (in seconds) to use when aging Path MTU values discovered by the mechanism defined in RFC 1191 [12]. The timeout is specified as a 32-bit unsigned integer.
The code for this option is 24, and its length is 4.
Alexander & Droms Standards Track [Page 12]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
Code Len Timeout +-----+-----+-----+-----+-----+-----+ | 24 | 4 | t1 | t2 | t3 | t4 | +-----+-----+-----+-----+-----+-----+
This option specifies a table of MTU sizes to use when performing Path MTU Discovery as defined in RFC 1191. The table is formatted as a list of 16-bit unsigned integers, ordered from smallest to largest. The minimum MTU value cannot be smaller than 68.
The code for this option is 25. Its minimum length is 2, and the length MUST be a multiple of 2.
This section details the options that affect the operation of the IP layer on a per-interface basis. It is expected that a client can issue multiple requests, one per interface, in order to configure interfaces with their specific parameters.
This option specifies whether or not the client may assume that all subnets of the IP network to which the client is connected use the same MTU as the subnet of that network to which the client is directly connected. A value of 1 indicates that all subnets share the same MTU. A value of 0 means that the client should assume that some subnets of the directly connected network may have smaller MTUs.
Alexander & Droms Standards Track [Page 13]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
The code for this option is 27, and its length is 1.
Code Len Value +-----+-----+-----+ | 27 | 1 | 0/1 | +-----+-----+-----+
This option specifies the broadcast address in use on the client's subnet. Legal values for broadcast addresses are specified in section 3.2.1.3 of [4].
The code for this option is 28, and its length is 4.
This option specifies whether or not the client should perform subnet mask discovery using ICMP. A value of 0 indicates that the client should not perform mask discovery. A value of 1 means that the client should perform mask discovery.
The code for this option is 29, and its length is 1.
Code Len Value +-----+-----+-----+ | 29 | 1 | 0/1 | +-----+-----+-----+
This option specifies whether or not the client should respond to subnet mask requests using ICMP. A value of 0 indicates that the client should not respond. A value of 1 means that the client should respond.
The code for this option is 30, and its length is 1.
Code Len Value +-----+-----+-----+ | 30 | 1 | 0/1 | +-----+-----+-----+
Alexander & Droms Standards Track [Page 14]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
This option specifies whether or not the client should solicit routers using the Router Discovery mechanism defined in RFC 1256 [13]. A value of 0 indicates that the client should not perform router discovery. A value of 1 means that the client should perform router discovery.
The code for this option is 31, and its length is 1.
Code Len Value +-----+-----+-----+ | 31 | 1 | 0/1 | +-----+-----+-----+
This option specifies a list of static routes that the client should install in its routing cache. If multiple routes to the same destination are specified, they are listed in descending order of priority.
The routes consist of a list of IP address pairs. The first address is the destination address, and the second address is the router for the destination.
The default route (0.0.0.0) is an illegal destination for a static route. See section 3.5 for information about the router option.
The code for this option is 33. The minimum length of this option is 8, and the length MUST be a multiple of 8.
Alexander & Droms Standards Track [Page 15]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
This option specifies whether or not the client should negotiate the use of trailers (RFC 893 [14]) when using the ARP protocol. A value of 0 indicates that the client should not attempt to use trailers. A value of 1 means that the client should attempt to use trailers.
The code for this option is 34, and its length is 1.
Code Len Value +-----+-----+-----+ | 34 | 1 | 0/1 | +-----+-----+-----+
This option specifies whether or not the client should use Ethernet Version 2 (RFC 894 [15]) or IEEE 802.3 (RFC 1042 [16]) encapsulation if the interface is an Ethernet. A value of 0 indicates that the client should use RFC 894 encapsulation. A value of 1 means that the client should use RFC 1042 encapsulation.
Alexander & Droms Standards Track [Page 16]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
The code for this option is 36, and its length is 1.
Code Len Value +-----+-----+-----+ | 36 | 1 | 0/1 | +-----+-----+-----+
This option specifies the default TTL that the client should use when sending TCP segments. The value is represented as an 8-bit unsigned integer. The minimum value is 1.
The code for this option is 37, and its length is 1.
Code Len TTL +-----+-----+-----+ | 37 | 1 | n | +-----+-----+-----+
This option specifies the interval (in seconds) that the client TCP should wait before sending a keepalive message on a TCP connection. The time is specified as a 32-bit unsigned integer. A value of zero indicates that the client should not generate keepalive messages on connections unless specifically requested by an application.
The code for this option is 38, and its length is 4.
Code Len Time +-----+-----+-----+-----+-----+-----+ | 38 | 4 | t1 | t2 | t3 | t4 | +-----+-----+-----+-----+-----+-----+
This option specifies the whether or not the client should send TCP keepalive messages with a octet of garbage for compatibility with older implementations. A value of 0 indicates that a garbage octet should not be sent. A value of 1 indicates that a garbage octet should be sent.
Alexander & Droms Standards Track [Page 17]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
The code for this option is 39, and its length is 1.
Code Len Value +-----+-----+-----+ | 39 | 1 | 0/1 | +-----+-----+-----+
This option specifies the name of the client's NIS [17] domain. The domain is formatted as a character string consisting of characters from the NVT ASCII character set.
The code for this option is 40. Its minimum length is 1.
Code Len NIS Domain Name +-----+-----+-----+-----+-----+-----+--- | 40 | n | n1 | n2 | n3 | n4 | ... +-----+-----+-----+-----+-----+-----+---
This option is used by clients and servers to exchange vendor- specific information. The information is an opaque object of n octets, presumably interpreted by vendor-specific code on the clients and servers. The definition of this information is vendor specific. The vendor is indicated in the vendor class identifier option. Servers not equipped to interpret the vendor-specific information sent by a client MUST ignore it (although it may be reported). Clients which do not receive desired vendor-specific information SHOULD make an attempt to operate without it, although they may do so (and announce they are doing so) in a degraded mode.
If a vendor potentially encodes more than one item of information in this option, then the vendor SHOULD encode the option using "Encapsulated vendor-specific options" as described below:
The Encapsulated vendor-specific options field SHOULD be encoded as a sequence of code/length/value fields of identical syntax to the DHCP options field with the following exceptions:
1) There SHOULD NOT be a "magic cookie" field in the encapsulated vendor-specific extensions field.
2) Codes other than 0 or 255 MAY be redefined by the vendor within the encapsulated vendor-specific extensions field, but SHOULD conform to the tag-length-value syntax defined in section 2.
3) Code 255 (END), if present, signifies the end of the encapsulated vendor extensions, not the end of the vendor extensions field. If no code 255 is present, then the end of the enclosing vendor-specific information field is taken as the end of the encapsulated vendor-specific extensions field.
The code for this option is 43 and its minimum length is 1.
Code Len Vendor-specific information +-----+-----+-----+-----+--- | 43 | n | i1 | i2 | ... +-----+-----+-----+-----+---
Alexander & Droms Standards Track [Page 19]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
When encapsulated vendor-specific extensions are used, the information bytes 1-n have the following format:
Code Len Data item Code Len Data item Code +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ | T1 | n | d1 | d2 | ... | T2 | n | D1 | D2 | ... | ... | +-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
8.6. NetBIOS over TCP/IP Datagram Distribution Server Option
The NetBIOS datagram distribution server (NBDD) option specifies a list of RFC 1001/1002 NBDD servers listed in order of preference. The code for this option is 45. The minimum length of the option is 4 octets, and the length must always be a multiple of 4.
The NetBIOS node type option allows NetBIOS over TCP/IP clients which are configurable to be configured as described in RFC 1001/1002. The value is specified as a single octet which identifies the client type as follows:
Value Node Type ----- --------- 0x1 B-node 0x2 P-node 0x4 M-node 0x8 H-node
Alexander & Droms Standards Track [Page 20]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
In the above chart, the notation '0x' indicates a number in base-16 (hexadecimal).
The code for this option is 46. The length of this option is always 1.
Code Len Node Type +-----+-----+-----------+ | 46 | 1 | see above | +-----+-----+-----------+
The NetBIOS scope option specifies the NetBIOS over TCP/IP scope parameter for the client as specified in RFC 1001/1002. See [19], [20], and [8] for character-set restrictions.
The code for this option is 47. The minimum length of this option is 1.
Code Len NetBIOS Scope +-----+-----+-----+-----+-----+-----+---- | 47 | n | s1 | s2 | s3 | s4 | ... +-----+-----+-----+-----+-----+-----+----
This option specifies the name of the client's NIS+ [17] domain. The domain is formatted as a character string consisting of characters from the NVT ASCII character set.
The code for this option is 64. Its minimum length is 1.
Code Len NIS Client Domain Name +-----+-----+-----+-----+-----+-----+--- | 64 | n | n1 | n2 | n3 | n4 | ... +-----+-----+-----+-----+-----+-----+---
This option specifies a list of IP addresses indicating mobile IP home agents available to the client. Agents SHOULD be listed in order of preference.
The code for this option is 68. Its minimum length is 0 (indicating no home agents are available) and the length MUST be a multiple of 4. It is expected that the usual length will be four octets, containing a single home agent's address.
Alexander & Droms Standards Track [Page 22]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
Code Len Home Agent Addresses (zero or more) +-----+-----+-----+-----+-----+-----+-- | 68 | n | a1 | a2 | a3 | a4 | ... +-----+-----+-----+-----+-----+-----+--
8.14. Simple Mail Transport Protocol (SMTP) Server Option
The SMTP server option specifies a list of SMTP servers available to the client. Servers SHOULD be listed in order of preference.
The code for the SMTP server option is 69. The minimum length for this option is 4 octets, and the length MUST always be a multiple of 4.
8.21. StreetTalk Directory Assistance (STDA) Server Option
The StreetTalk Directory Assistance (STDA) server option specifies a list of STDA servers available to the client. Servers SHOULD be listed in order of preference.
The code for the StreetTalk Directory Assistance server option is 76. The minimum length for this option is 4 octets, and the length MUST always be a multiple of 4.
This option is used in a client request (DHCPDISCOVER or DHCPREQUEST) to allow the client to request a lease time for the IP address. In a server reply (DHCPOFFER), a DHCP server uses this option to specify the lease time it is willing to offer.
Alexander & Droms Standards Track [Page 25]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
The time is in units of seconds, and is specified as a 32-bit unsigned integer.
The code for this option is 51, and its length is 4.
Code Len Lease Time +-----+-----+-----+-----+-----+-----+ | 51 | 4 | t1 | t2 | t3 | t4 | +-----+-----+-----+-----+-----+-----+
This option is used to indicate that the DHCP 'sname' or 'file' fields are being overloaded by using them to carry DHCP options. A DHCP server inserts this option if the returned parameters will exceed the usual space allotted for options.
If this option is present, the client interprets the specified additional fields after it concludes interpretation of the standard option fields.
The code for this option is 52, and its length is 1. Legal values for this option are:
Value Meaning ----- -------- 1 the 'file' field is used to hold options 2 the 'sname' field is used to hold options 3 both fields are used to hold options
Code Len Value +-----+-----+-----+ | 52 | 1 |1/2/3| +-----+-----+-----+
This option is used in DHCPOFFER and DHCPREQUEST messages, and may optionally be included in the DHCPACK and DHCPNAK messages. DHCP servers include this option in the DHCPOFFER in order to allow the client to distinguish between lease offers. DHCP clients use the contents of the 'server identifier' field as the destination address for any DHCP messages unicast to the DHCP server. DHCP clients also indicate which of several lease offers is being accepted by including this option in a DHCPREQUEST message.
The identifier is the IP address of the selected server.
The code for this option is 54, and its length is 4.
Alexander & Droms Standards Track [Page 27]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
This option is used by a DHCP client to request values for specified configuration parameters. The list of requested parameters is specified as n octets, where each octet is a valid DHCP option code as defined in this document.
The client MAY list the options in order of preference. The DHCP server is not required to return the options in the requested order, but MUST try to insert the requested options in the order requested by the client.
The code for this option is 55. Its minimum length is 1.
Code Len Option Codes +-----+-----+-----+-----+--- | 55 | n | c1 | c2 | ... +-----+-----+-----+-----+---
This option is used by a DHCP server to provide an error message to a DHCP client in a DHCPNAK message in the event of a failure. A client may use this option in a DHCPDECLINE message to indicate the why the client declined the offered parameters. The message consists of n octets of NVT ASCII text, which the client may display on an available output device.
The code for this option is 56 and its minimum length is 1.
Code Len Text +-----+-----+-----+-----+--- | 56 | n | c1 | c2 | ... +-----+-----+-----+-----+---
This option specifies the maximum length DHCP message that it is willing to accept. The length is specified as an unsigned 16-bit integer. A client may use the maximum DHCP message size option in DHCPDISCOVER or DHCPREQUEST messages, but should not use the option in DHCPDECLINE messages.
Alexander & Droms Standards Track [Page 28]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
The code for this option is 57, and its length is 2. The minimum legal value is 576 octets.
This option is used by DHCP clients to optionally identify the vendor type and configuration of a DHCP client. The information is a string of n octets, interpreted by servers. Vendors may choose to define specific vendor class identifiers to convey particular configuration or other identification information about a client. For example, the identifier may encode the client's hardware configuration. Servers not equipped to interpret the class-specific information sent by a client MUST ignore it (although it may be reported). Servers that
Alexander & Droms Standards Track [Page 29]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
respond SHOULD only use option 43 to return the vendor-specific information to the client.
The code for this option is 60, and its minimum length is 1.
Code Len Vendor class Identifier +-----+-----+-----+-----+--- | 60 | n | i1 | i2 | ... +-----+-----+-----+-----+---
This option is used by DHCP clients to specify their unique identifier. DHCP servers use this value to index their database of address bindings. This value is expected to be unique for all clients in an administrative domain.
Identifiers SHOULD be treated as opaque objects by DHCP servers.
The client identifier MAY consist of type-value pairs similar to the 'htype'/'chaddr' fields defined in [3]. For instance, it MAY consist of a hardware type and hardware address. In this case the type field SHOULD be one of the ARP hardware types defined in STD2 [22]. A hardware type of 0 (zero) should be used when the value field contains an identifier other than a hardware address (e.g. a fully qualified domain name).
For correct identification of clients, each client's client- identifier MUST be unique among the client-identifiers used on the subnet to which the client is attached. Vendors and system administrators are responsible for choosing client-identifiers that meet this requirement for uniqueness.
The code for this option is 61, and its minimum length is 2.
Code Len Type Client-Identifier +-----+-----+-----+-----+-----+--- | 61 | n | t1 | i1 | i2 | ... +-----+-----+-----+-----+-----+---
Alexander & Droms Standards Track [Page 30]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
The author of a new DHCP option will follow these steps to obtain acceptance of the option as a part of the DHCP Internet Standard:
1. The author devises the new option. 2. The author requests a number for the new option from IANA by contacting: Internet Assigned Numbers Authority (IANA) USC/Information Sciences Institute 4676 Admiralty Way Marina del Rey, California 90292-6695
or by email as: iana@iana.org
3. The author documents the new option, using the newly obtained option number, as an Internet Draft. 4. The author submits the Internet Draft for review through the IETF standards process as defined in "Internet Official Protocol Standards" (STD 1). The new option will be submitted for eventual acceptance as an Internet Standard. 5. The new option progresses through the IETF standards process; the new option will be reviewed by the Dynamic Host Configuration Working Group (if that group still exists), or as an Internet Draft not submitted by an IETF working group. 6. If the new option fails to gain acceptance as an Internet Standard, the assigned option number will be returned to IANA for reassignment.
This procedure for defining new extensions will ensure that:
* allocation of new option numbers is coordinated from a single authority, * new options are reviewed for technical correctness and appropriateness, and * documentation for new options is complete and published.
The author thanks the many (and too numerous to mention!) members of the DHC WG for their tireless and ongoing efforts in the development of DHCP and this document.
The efforts of J Allard, Mike Carney, Dave Lapp, Fred Lien and John Mendonca in organizing DHCP interoperability testing sessions are gratefully acknowledged.
Alexander & Droms Standards Track [Page 31]
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
The development of this document was supported in part by grants from the Corporation for National Research Initiatives (CNRI), Bucknell University and Sun Microsystems.
RFC 2132 DHCP Options and BOOTP Vendor Extensions March 1997
[14] Leffler, S. and M. Karels, "Trailer Encapsulations", RFC 893, U. C. Berkeley, April 1984.
[15] Hornig, C., "Standard for the Transmission of IP Datagrams over Ethernet Networks", RFC 894, Symbolics, April 1984.
[16] Postel, J. and J. Reynolds, "Standard for the Transmission of IP Datagrams Over IEEE 802 Networks", RFC 1042, USC/Information Sciences Institute, February 1988.
[17] Sun Microsystems, "System and Network Administration", March 1990.
[18] Mills, D., "Internet Time Synchronization: The Network Time Protocol", RFC 1305, UDEL, March 1992.
[19] NetBIOS Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods", STD 19, RFC 1001, March 1987.
[20] NetBIOS Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Detailed Specifications", STD 19, RFC 1002, March 1987.
[21] Scheifler, R., "FYI On the X Window System", FYI 6, RFC 1198, MIT Laboratory for Computer Science, January 1991.
[22] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2, RFC 1700, USC/Information Sciences Institute, July 1992.