RFC 3211
This document is obsolete. Please refer to RFC 3369 and RFC 3370.






Network Working Group                                         P. Gutmann
Request for Comments: 3211                        University of Auckland
Category: Standards Track                                  December 2001


                   Password-based Encryption for CMS

Status of this Memo



   This document specifies an Internet standards track protocol for the
   Internet community, and requests discussion and suggestions for
   improvements.  Please refer to the current edition of the "Internet
   Official Protocol Standards" (STD 1) for the standardization state
   and status of this protocol.  Distribution of this memo is unlimited.

Copyright Notice



   Copyright (C) The Internet Society (2001).  All Rights Reserved.

Abstract



   This document provides a method of encrypting data using user-
   supplied passwords and, by extension, any form of variable-length
   keying material which is not necessarily an algorithm-specific
   fixed-format key.  The Cryptographic Message Syntax data format does
   not currently contain any provisions for password-based data
   encryption.

1. Introduction



   This document describes a password-based content encryption mechanism
   for CMS.  This is implemented as a new RecipientInfo type and is an
   extension to the RecipientInfo types currently defined in RFC 2630.

   The format of the messages are described in ASN.1 [ASN1].

   The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
   "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
   interpreted as described in RFC 2119.












Gutmann                     Standards Track                     [Page 1]

RFC 3211           Password-based Encryption for CMS       December 2001


1.1 Password-based Content Encryption



   CMS currently defined three recipient information types for public-
   key key wrapping (KeyTransRecipientInfo), conventional key wrapping
   (KEKRecipientInfo), and key agreement (KeyAgreeRecipientInfo).  The
   recipient information described here adds a fourth type,
   PasswordRecipientInfo, which provides for password-based key
   wrapping.

1.2 RecipientInfo Types



   The new recipient information type is an extension to the
   RecipientInfo type defined in section 6.2 of CMS, extending the types
   to:

      RecipientInfo ::= CHOICE {
        ktri KeyTransRecipientInfo,
        kari [1] KeyAgreeRecipientInfo,
        kekri [2] KEKRecipientInfo,
        pwri [3] PasswordRecipientinfo   -- New RecipientInfo type
        }

   Although the recipient information generation process is described in
   terms of a password-based operation (since this will be its most
   common use), the transformation employed is a general-purpose key
   derivation one which allows any type of keying material to be
   converted into a key specific to a particular content-encryption
   algorithm.  Since the most common use for password-based encryption
   is to encrypt files which are stored locally (rather than being
   transmitted across a network), the term "recipient" is somewhat
   misleading, but is used here because the other key transport
   mechanisms have always been described in similar terms.

1.2.1  PasswordRecipientInfo Type



   Recipient information using a user-supplied password or previously
   agreed-upon key is represented in the type PasswordRecipientInfo.
   Each instance of PasswordRecipientInfo will transfer the content-
   encryption key (CEK) to one or more recipients who have the
   previously agreed-upon password or key-encryption key (KEK).

      PasswordRecipientInfo ::= SEQUENCE {
        version CMSVersion,   -- Always set to 0
        keyDerivationAlgorithm
                         [0] KeyDerivationAlgorithmIdentifier OPTIONAL,
        keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
        encryptedKey EncryptedKey }




Gutmann                     Standards Track                     [Page 2]

RFC 3211           Password-based Encryption for CMS       December 2001


   The fields of type PasswordRecipientInfo have the following meanings:

      version is the syntax version number.  It MUST be 0.  Details of
      the CMSVersion type are discussed in CMS [RFC2630], section
      10.2.5.

      keyDerivationAlgorithm identifies the key-derivation algorithm,
      and any associated parameters, used to derive the KEK from the
      user-supplied password.  If this field is absent, the KEK is
      supplied from an external source, for example a crypto token such
      as a smart card.

      keyEncryptionAlgorithm identifies the key-encryption algorithm,
      and any associated parameters, used to encrypt the CEK with the
      KEK.

      encryptedKey is the result of encrypting the content-encryption
      key with the KEK.

1.2.2 Rationale



   Password-based key wrapping is a two-stage process, a first stage in
   which a user-supplied password is converted into a KEK if required,
   and a second stage in which the KEK is used to encrypt a CEK.  These
   two stages are identified by the two algorithm identifiers.  Although
   the PKCS #5v2 standard [RFC2898] goes one step further to wrap these
   up into a single algorithm identifier, this design is particular to
   that standard and may not be applicable for other key wrapping
   mechanisms.  For this reason the two steps are specified separately.

   The current format doesn't provide any means of differentiating
   between multiple password recipient infos, which would occur for
   example if two passwords are used to encrypt the same data.
   Unfortunately there is a lack of existing practice in this area,
   since typical applications follow the model of encrypting data such
   as a file with a single password obtained from the user.  Without any
   clear requirements, an appropriate multiple password mechanism would
   be difficult (perhaps impossible) to define at this time.  If
   sufficient demand emerges then this may be addressed in a future
   version of this document, for example by adding an optional
   identification field of an appropriate form.

2 Supported Algorithms



   This section lists the algorithms that must be implemented.
   Additional algorithms that should be implemented are also included.





Gutmann                     Standards Track                     [Page 3]

RFC 3211           Password-based Encryption for CMS       December 2001


2.1 Key Derivation Algorithms



   These algorithms are used to convert the password into a KEK.  The
   key derivation algorithms are:

      KeyDerivationAlgorithmIdentifer ::= AlgorithmIdentifier

   Conforming implementations MUST include PBKDF2 [RFC2898].  Appendix B
   contains a more precise definition of the allowed algorithm type than
   is possible using 1988 ASN.1.

2.2 Key Encryption Algorithms



   These algorithms are used to encrypt the CEK using the derived KEK.
   The key encryption algorithms are:

      KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

   The PasswordRecipientInfo key encryption algorithm identifier is:

      id-alg-PWRI-KEK OBJECT IDENTIFIER ::= { iso(1) member-body(2)
        us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 9 }

   The AlgorithmIdentifier parameters field for this algorithm contains
   the KEK encryption algorithm used with the the key wrap algorithm
   specified in section 2.3.

   There is no requirement that the CEK algorithm match the KEK
   encryption algorithm, although care should be taken to ensure that,
   if different algorithms are used, they offer an equivalent level of
   security (for example wrapping a Triple-DES key with an RC2/40 key
   leads to a severe impedance mismatch in encryption strength).

   Conforming implementations MUST implement the id-alg-PWRI-KEK key
   wrap algorithm.  For the KEK encryption algorithms used by id-alg-
   PWRI-KEK, conforming implementations MUST include Triple-DES in CBC
   mode and MAY include other algorithms such as AES, CAST-128, RC5,
   IDEA, Skipjack, Blowfish, and encryption modes as required.
   Implementations SHOULD NOT include any KSG (keystream generator)
   ciphers such as RC4 or a block cipher in OFB mode, and SHOULD NOT
   include a block cipher in ECB mode.

2.2.1 Rationale



   The use of a level of indirection in specifying the
   KeyEncryptionAlgorithmIdentifier allows alternative wrapping
   algorithms to be used in the future.  If the KEK algorithm were
   specified directly in this field then any use of an alternative



Gutmann                     Standards Track                     [Page 4]

RFC 3211           Password-based Encryption for CMS       December 2001


   wrapping algorithm would require a change to the
   PasswordRecipientInfo structure rather than simply a change to the
   key encryption algorithm identifier.

   The parameter field for this algorithm identifier could be specified
   to default to triple-DES, however due to the confusion over NULL vs
   absent parameters in algorithm identifiers it's left explicit with no
   default value.

2.3.1 Key Wrap



   The key wrap algorithm encrypts a CEK with a KEK in a manner which
   ensures that every bit of plaintext effects every bit of ciphertext.
   This makes it equivalent in function to the package transform
   [PACKAGE] without requiring additional mechanisms or resources such
   as hash functions or cryptographically strong random numbers.  The
   key wrap algorithm is performed in two phases, a first phase which
   formats the CEK into a form suitable for encryption by the KEK, and a
   second phase which wraps the formatted CEK using the KEK.

   Key formatting: Create a formatted CEK block consisting of the
   following:

      1. A one-byte count of the number of bytes in the CEK.

      2. A check value containing the bitwise complement of the first
         three bytes of the CEK.

      3. The CEK.



      4. Enough random padding data to make the CEK data block a
         multiple of the KEK block length and at least two KEK cipher
         blocks long (the fact that 32 bits of count+check value are
         used means that even with a 40-bit CEK, the resulting data size
         will always be at least two (64-bit) cipher blocks long).  The
         padding data does not have to be cryptographically strong,
         although unpredictability helps.  Note that PKCS #5 padding is
         not used, since the length of the data is already known.

   The formatted CEK block then looks as follows:

      CEK byte count || check value || CEK || padding (if required)

   Key wrapping:

      1. Encrypt the padded key using the KEK.





Gutmann                     Standards Track                     [Page 5]

RFC 3211           Password-based Encryption for CMS       December 2001


      2. Without resetting the IV (that is, using the last ciphertext
         block as the IV), encrypt the encrypted padded key a second
         time.

   The resulting double-encrypted data is the EncryptedKey.

2.3.2 Key Unwrap



   Key unwrapping:

      1. Using the n-1'th ciphertext block as the IV, decrypt the n'th
         ciphertext block.

      2. Using the decrypted n'th ciphertext block as the IV, decrypt
         the 1st ... n-1'th ciphertext blocks.  This strips the outer
         layer of encryption.

      3. Decrypt the inner layer of encryption using the KEK.

   Key format verification:

      1a. If the CEK byte count is less than the minimum allowed key
          size (usually 5 bytes for 40-bit keys) or greater than the
          wrapped CEK length or not valid for the CEK algorithm (eg not
          16 or 24 bytes for triple DES), the KEK was invalid.

      1b. If the bitwise complement of the key check value doesn't match
          the first three bytes of the key, the KEK was invalid.

2.3.3 Example



   Given a content-encryption algorithm of Skipjack and a KEK algorithm
   of Triple-DES, the wrap steps are as follows:

      1. Set the first 4 bytes of the CEK block to the Skipjack key size
         (10 bytes) and the bitwise complement of the first three bytes
         of the CEK.

      2. Append the 80-bit (10-byte) Skipjack CEK and pad the total to
         16 bytes (two triple-DES blocks) using 2 bytes of random data.

      2. Using the IV given in the KeyEncryptionAlgorithmIdentifer,
         encrypted the padded Skipjack key.

      3. Without resetting the IV, encrypt the encrypted padded key a
         second time.





Gutmann                     Standards Track                     [Page 6]

RFC 3211           Password-based Encryption for CMS       December 2001


   The unwrap steps are as follows:

      1. Using the first 8 bytes of the double-encrypted key as the IV,
         decrypt the second 8 bytes.

      2. Without resetting the IV, decrypt the first 8 bytes.

      3. Decrypt the inner layer of encryption using the the IV given in
         the KeyEncryptionAlgorithmIdentifer to recover the padded
         Skipjack key.

      4. If the length byte isn't equal to the Skipjack key size (80
         bits or 10 bytes) or the bitwise complement of the check bytes
         doesn't match the first three bytes of the CEK, the KEK was
         invalid.

2.3.4 Rationale for the Double Wrapping



   If many CEKs are encrypted in a standard way with the same KEK and
   the KEK has a 64-bit block size then after about 2^32 encryptions
   there is a high probability of a collision between different blocks
   of encrypted CEKs.  If an opponent manages to obtain a CEK, they may
   be able to solve for other CEKs.  The double-encryption wrapping
   process, which makes every bit of ciphertext dependent on every bit
   of the CEK, eliminates this collision problem (as well as preventing
   other potential problems such as bit-flipping attacks).  Since the IV
   is applied to the inner layer of encryption, even wrapping the same
   CEK with the same KEK will result in a completely different wrapped
   key each time.

   An additional feature of the double wrapping is that it doesn't
   require the use of any extra algorithms such as hash algorithms in
   addition to the wrapping algorithm itself, allowing it to be
   implemented in devices which only support one type of encryption
   algorithm.  A typical example of such a device is a crypto token such
   as a smart card which often only supports a single block cipher and a
   single public-key algorithm, making it impossible to wrap keys if the
   use of an additional algorithm were required.

3. Test Vectors

   This section contains two sets of test vectors, a very basic set for
   DES which can be used to verify correctness and which uses an
   algorithm which is freely exportable from the US, and a stress-test
   version which uses very long passphrase and key sizes and a mixture
   of algorithms which can be used to verify the behaviour in extreme
   cases.




Gutmann                     Standards Track                     [Page 7]

RFC 3211           Password-based Encryption for CMS       December 2001


   The basic test contains two subtests, a known-answer test for the key
   derivation stage and a full test of the key wrapping.  Both tests use
   a DES-CBC key derived from the password "password" with salt { 12 34
   56 78 78 56 34 12 } using 5 iterations of PBKDF2.  In the known
   answer test the IV is set to all zeroes (equivalent to using ECB) and
   used to encrypt an all-zero data block.

   The following values are obtained for the known-answer test:

   PKCS #5v2 values:

      input         70 61 73 73 77 6f 72 64
      passphrase:   "password"
      input salt:   12 34 56 78 78 56 34 12
      iterations:   5

      output key:   D1 DA A7 86 15 F2 87 E6
      known answer: 9B BD 78 FC 11 A3 A9 08

   The following values are obtained when wrapping a 64-bit (parity-
   adjusted) DES-EBC key:

   PKCS #5v2 values:

      input         70 61 73 73 77 6f 72 64
      passphrase:   "password"
      input salt:   12 34 56 78 78 56 34 12
      iterations:   5

      output key:   D1 DA A7 86 15 F2 87 E6

   CEK formatting phase:

      length byte:  08
      key check:    73 9D 83
      CEK:          8C 62 7C 89 73 23 A2 F8
      padding:      C4 36 F5 41

      complete      08 73 9D 83 8C 62 7C 89 73 23 A2 F8 C4 36 F5 41
      CEK block:











Gutmann                     Standards Track                     [Page 8]

RFC 3211           Password-based Encryption for CMS       December 2001


   Key wrap phase (wrap CEK block using DES key):

      IV:           EF E5 98 EF 21 B3 3D 6D

      first encr.   06 A0 43 86 1E 82 88 E4 8B 59 9E B9 76 10 00 D4
      pass output:
      second encr.  B8 1B 25 65 EE 37 3C A6 DE DC A2 6A 17 8B 0C 10
      pass output:

   ASN.1 encoded PasswordRecipientInfo:

    0 A3   68: [3] {
    2 02    1:   INTEGER 0
    5 A0   26:   [0] {
    7 06    9:     OBJECT IDENTIFIER id-PBKDF2 (1 2 840 113549 1 5 12)
   18 30   13:     SEQUENCE {
   20 04    8:       OCTET STRING
             :         12 34 56 78 78 56 34 12
   30 02    1:       INTEGER 5
             :       }
             :     }
   34 30   32:   SEQUENCE {
   36 06   11:     OBJECT IDENTIFIER id-alg-PWRI-KEK
             :         (1 2 840 113549 1 9 16 3 9)
   33 30   17:     SEQUENCE {
   35 06    5:       OBJECT IDENTIFIER des-CBC (1 3 14 3 2 7)
   42 04    8:       OCTET STRING
             :         EF E5 98 EF 21 B3 3D 6D
             :       }
             :     }
   68 04   16:   OCTET STRING
             :     B8 1B 25 65 EE 37 3C A6 DE DC A2 6A 17 8B 0C 10
             :   }


















Gutmann                     Standards Track                     [Page 9]

RFC 3211           Password-based Encryption for CMS       December 2001


   The following values are obtained when wrapping a 256-bit key (for
   example one for AES or Blowfish) using a triple DES-CBC key derived
   from the passphrase "All n-entities must communicate with other
   n-entities via n-1 entiteeheehees" with salt
   { 12 34 56 78 78 56 34 12 } using 500 iterations of PBKDF2.

   PKCS #5v2 values:

      input         41 6C 6C 20 6E 2D 65 6E 74 69 74 69 65 73 20 6D
      passphrase:   75 73 74 20 63 6F 6D 6D 75 6E 69 63 61 74 65 20
                    77 69 74 68 20 6F 74 68 65 72 20 6E 2d 65 6E 74
                    69 74 69 65 73 20 76 69 61 20 6E 2D 31 20 65 6E
                    74 69 74 65 65 68 65 65 68 65 65 73
                    "All n-entities must communicate with other "
                    "n-entities via n-1 entiteeheehees"
      input
      salt:         12 34 56 78 78 56 34 12
      iterations:   500

      output        6A 89 70 BF 68 C9 2C AE A8 4A 8D F2 85 10 85 86
      3DES key:     07 12 63 80 CC 47 AB 2D

   CEK formatting phase:

      length byte:  20
      key check:    73 9C 82
      CEK:          8C 63 7D 88 72 23 A2 F9 65 B5 66 EB 01 4B 0F A5
                    D5 23 00 A3 F7 EA 40 FF FC 57 72 03 C7 1B AF 3B
      padding:      FA 06 0A 45

      complete      20 73 9C 82 8C 63 7D 88 72 23 A2 F9 65 B5 66 EB
      CEK block:    01 4B 0F A5 D5 23 00 A3 F7 EA 40 FF FC 57 72 03
                    C7 1B AF 3B FA 06 0A 45

   Key wrap phase (wrap CEK block using 3DES key):

      IV:           BA F1 CA 79 31 21 3C 4E

      first encr.   F8 3F 9E 16 78 51 41 10 64 27 65 A9 F5 D8 71 CD
      pass output:  27 DB AA 41 E7 BD 80 48 A9 08 20 FF 40 82 A2 80
                    96 9E 65 27 9E 12 6A EB

      second encr.  C0 3C 51 4A BD B9 E2 C5 AA C0 38 57 2B 5E 24 55
      pass output:  38 76 B3 77 AA FB 82 EC A5 A9 D7 3F 8A B1 43 D9
                    EC 74 E6 CA D7 DB 26 0C






Gutmann                     Standards Track                    [Page 10]

RFC 3211           Password-based Encryption for CMS       December 2001


   ASN.1 encoded PasswordRecipientInfo:

    0 A3   96: [3] {
    2 02    1:   INTEGER 0
    5 A0   27:   [0] {
    7 06    9:     OBJECT IDENTIFIER id-PBKDF2 (1 2 840 113549 1 5 12)
   18 30   14:     SEQUENCE {
   20 04    8:       OCTET STRING
             :         12 34 56 78 78 56 34 12
   30 02    2:       INTEGER 500
             :       }
             :     }
   34 30   35:   SEQUENCE {
   36 06   11:     OBJECT IDENTIFIER id-alg-PWRI-KEK
             :         (1 2 840 113549 1 9 16 3 9)
   34 30   20:     SEQUENCE {
   36 06    8:       OBJECT IDENTIFIER des-EDE3-CBC (1 2 840 113549 3 7)
   46 04    8:       OCTET STRING
             :         BA F1 CA 79 31 21 3C 4E
             :       }
             :     }
   71 04   40:   OCTET STRING
             :     C0 3C 51 4A BD B9 E2 C5 AA C0 38 57 2B 5E 24 55
             :     38 76 B3 77 AA FB 82 EC A5 A9 D7 3F 8A B1 43 D9
             :     EC 74 E6 CA D7 DB 26 0C
             :   }

4. Security Considerations



   The security of this recipient information type rests on the security
   of the underlying mechanisms employed, for which further information
   can be found in RFC 2630 and PKCS5v2.  More importantly, however,
   when used with a password the security of this information type rests
   on the entropy of the user-selected password, which is typically
   quite low.  Pass phrases (as opposed to simple passwords) are
   STRONGLY RECOMMENDED, although it should be recognized that even with
   pass phrases it will be difficult to use this recipient information
   type to derive a KEK with sufficient entropy to properly protect a
   128-bit (or higher) CEK.












Gutmann                     Standards Track                    [Page 11]

RFC 3211           Password-based Encryption for CMS       December 2001


5. IANA Considerations



   The PasswordRecipientInfo key encryption algorithms are identified by
   object identifiers (OIDs).  OIDs were assigned from an arc
   contributed to the S/MIME Working Group by the RSA Security.  Should
   additional encryption algorithms be introduced, the advocates for
   such algorithms are expected to assign the necessary OIDs from their
   own arcs.  No action by the IANA is necessary for this document or
   any anticipated updates.

Acknowledgments

   The author would like to thank Jim Schaad, Phil Griffin, and the
   members of the S/MIME Working Group for their comments and feedback
   on this document.

Author Address

   Peter Gutmann
   University of Auckland
   Private Bag 92019
   Auckland, New Zealand

   EMail: pgut001@cs.auckland.ac.nz

References

   [ASN1]    CCITT Recommendation X.208: Specification of Abstract
             Syntax Notation One (ASN.1), 1988.

   [RFC2119] Bradner, S., "Key Words for Use in RFCs to Indicate
             Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC2630] Housley, R., "Cryptographic Message Syntax", RFC 2630, June
             1999.

   [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
             Specification, Version 2.0", RFC 2898, September 2000.

   [PACKAGE] All-or-Nothing Encryption and the Package Transform, R.
             Rivest, Proceedings of Fast Software Encryption '97, Haifa,
             Israel, January 1997.









Gutmann                     Standards Track                    [Page 12]

RFC 3211           Password-based Encryption for CMS       December 2001


Appendix A: ASN.1:1988 Module



PasswordRecipientInfo-88
    { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
      smime(16) modules(0) pwri(17) }

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

IMPORTS

  AlgorithmIdentifier
  FROM AuthenticationFramework { joint-iso-itu-t ds(5) module(1)
                                 authenticationFramework(7) 3 }

  CMSVersion, EncryptedKey
  FROM CryptographicMessageSyntax { iso(1) member-body(2) us(840)
                                    rsadsi(113549) pkcs(1) pkcs-9(9)
                                    smime(16) modules(0) cms(1) };

-- The following PDU is defined in PKCS5 { iso(1) member-body(2)
-- us(840) rsadsi(113549) pkcs(1) pkcs-5(5) modules(16)
-- pkcs5v2-0(1) }, however it can't be imported because because
-- it's specified in 1994/1997 ASN.1.  Because of this it's copied
-- here from the source but rephrased as 1988 ASN.1.  Further
-- details are given in [RFC 2898].

PBKDF2-params ::= SEQUENCE {
  salt OCTET STRING,
  iterationCount INTEGER (1..MAX),
  keyLength INTEGER (1..MAX) OPTIONAL,
  prf AlgorithmIdentifier
            DEFAULT { algorithm id-hmacWithSHA1, parameters NULL } }

-- The PRF algorithm is also defined in PKCS5 and can neither be
-- imported nor expressed in 1988 ASN.1, however it is encoded as
-- an AlgorithmIdentifier with the OID:

id-hmacWithSHA1 OBJECT IDENTIFIER ::= { iso(1) member-body(2)
    us(840) rsadsi(113549) digestAlgorithm(2) 7 }

-- and NULL parameters.  Further details are given in [RFC 2898].

-- Implementation note: Because of the inability to precisely
-- specify the PBKDF2 PDU or its parameters in 1988 ASN.1, it is
-- likely that implementors will also encounter alternative
-- interpretations of these parameters, usually using an alternate
-- OID from the IPsec arc which is generally used for HMAC-SHA1:



Gutmann                     Standards Track                    [Page 13]

RFC 3211           Password-based Encryption for CMS       December 2001


--
-- hMAC-SHA1 OBJECT IDENTIFIER ::= { iso(1)
--     identified-organization(3) dod(6) internet(1) security(5)
--     mechanisms(5) 8 1 2 }
--
-- with absent (rather than NULL) parameters.

-- The PasswordRecipientInfo

id-alg-PWRI-KEK OBJECT IDENTIFIER ::= { iso(1) member-body(2)
    us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 9 }

PasswordRecipientInfo ::= SEQUENCE {
  version CMSVersion,       -- Always set to 0
  keyDerivationAlgorithm
                    [0] KeyDerivationAlgorithmIdentifier OPTIONAL,
  keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
  encryptedKey EncryptedKey }

KeyDerivationAlgorithmIdentifier ::= AlgorithmIdentifier

KeyEncryptionAlgorithmIdentifier ::= AlgorithmIdentifier

END  -- PasswordRecipientInfo-88 --

Appendix B: ASN.1:1997 Module



This appendix contains the same information as Appendix A in a more
recent (and precise) ASN.1 notation, however Appendix A takes
precedence in case of conflict.

PasswordRecipientInfo-97
    { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
      smime(16) modules(0) pwri(18) }

DEFINITIONS IMPLICIT TAGS ::=
BEGIN

IMPORTS

  id-PBKDF2, PBKDF2-params,
  FROM PKCS5 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
               pkcs-5(5) }

  CMSVersion, EncryptedKey, des-ede3-cbc, CBCParameter
  FROM CryptographicMessageSyntax { iso(1) member-body(2) us(840)
                                    rsadsi(113549) pkcs(1) pkcs-9(9)
                                    smime(16) modules(0) cms(1) };



Gutmann                     Standards Track                    [Page 14]

RFC 3211           Password-based Encryption for CMS       December 2001


id-alg-PWRI-KEK OBJECT IDENTIFIER ::= { iso(1) member-body(2)
    us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) alg(3) 9 }

PasswordRecipientInfo ::= SEQUENCE {
  version CMSVersion,       -- Always set to 0
  keyDerivationAlgorithm
                     [0] KeyDerivationAlgorithmIdentifier OPTIONAL,
  keyEncryptionAlgorithm KeyEncryptionAlgorithmIdentifier,
  encryptedKey           EncryptedKey }

KeyDerivationAlgorithmIdentifier ::=
  AlgorithmIdentifier {{ KeyDerivationAlgorithms }}

KeyDerivationAlgorithms ALGORITHM ::= {
  { OID id-PBKDF2 PARMS PBKDF2-params },
   ...
  }

KeyEncryptionAlgorithmIdentifier ::=
  AlgorithmIdentifier {{ KeyEncryptionAlgorithms }}

KeyEncryptionAlgorithms ALGORITHM ::= {
  { OID id-alg-PWRI-KEK PARMS
    AlgorithmIdentifier {{ PWRIAlgorithms }} },
  ...
  }

-- Algorithm identifiers for algorithms used with the
-- id-alg-PWRI-KEK key wrap algorithm.  Currently only 3DES is a
-- MUST, all others are optional

PWRIAlgorithms ALGORITHM ::= {
  { OID des-ede3-cbc PARMS CBCParameter },
  ...
  }

-- Supporting definitions.  We could also pull in the
-- AlgorithmIdentifier from an appropriately recent X.500 module (or
-- wherever) but it's just as easy (and more convenient for readers)
-- to provide a definition here

AlgorithmIdentifier { ALGORITHM:IOSet } ::= SEQUENCE {
  algorithm        ALGORITHM.&id({IOSet}),
  parameters       ALGORITHM.&Type({IOSet}{@algorithm})  OPTIONAL
  }

ALGORITHM ::= CLASS {
  &id              OBJECT IDENTIFIER  UNIQUE,



Gutmann                     Standards Track                    [Page 15]

RFC 3211           Password-based Encryption for CMS       December 2001


  &Type            OPTIONAL
  }
  WITH SYNTAX { OID &id [PARMS &Type] }

END  -- PasswordRecipientInfo-97 --














































Gutmann                     Standards Track                    [Page 16]

RFC 3211           Password-based Encryption for CMS       December 2001


Full Copyright Statement



   Copyright (C) The Internet Society (2001).  All Rights Reserved.

   This document and translations of it may be copied and furnished to
   others, and derivative works that comment on or otherwise explain it
   or assist in its implementation may be prepared, copied, published
   and distributed, in whole or in part, without restriction of any
   kind, provided that the above copyright notice and this paragraph are
   included on all such copies and derivative works.  However, this
   document itself may not be modified in any way, such as by removing
   the copyright notice or references to the Internet Society or other
   Internet organizations, except as needed for the purpose of
   developing Internet standards in which case the procedures for
   copyrights defined in the Internet Standards process must be
   followed, or as required to translate it into languages other than
   English.

   The limited permissions granted above are perpetual and will not be
   revoked by the Internet Society or its successors or assigns.

   This document and the information contained herein is provided on an
   "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
   TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
   BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
   HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement



   Funding for the RFC Editor function is currently provided by the
   Internet Society.



















Gutmann                     Standards Track                    [Page 17]