RFC 7273






Internet Engineering Task Force (IETF)                       A. Williams
Request for Comments: 7273                                      Audinate
Category: Standards Track                                       K. Gross
ISSN: 2070-1721                                             AVA Networks
                                                      R. van Brandenburg
                                                             H. Stokking
                                                                     TNO
                                                               June 2014


                      RTP Clock Source Signalling

Abstract



   NTP format timestamps are used by several RTP protocols for
   synchronisation and statistical measurements.  This memo specifies
   Session Description Protocol (SDP) signalling that identifies
   timestamp reference clock sources and SDP signalling that identifies
   the media clock sources in a multimedia session.

Status of This Memo



   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 5741.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   http://www.rfc-editor.org/info/rfc7273.

Copyright Notice



   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.



Williams, et al.             Standards Track                    [Page 1]

RFC 7273               RTP Clock Source Signalling             June 2014


Table of Contents



   1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
     1.1.  Requirements Language . . . . . . . . . . . . . . . . . .   3
   2.  Applications  . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Definitions . . . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Timestamp Reference Clock Source Signalling . . . . . . . . .   5
     4.1.  Clock Synchronisation . . . . . . . . . . . . . . . . . .   5
     4.2.  Identifying NTP Reference Clocks  . . . . . . . . . . . .   6
     4.3.  Identifying PTP Reference Clocks  . . . . . . . . . . . .   6
     4.4.  Identifying Global Reference Clocks . . . . . . . . . . .   8
     4.5.  Private Reference Clocks  . . . . . . . . . . . . . . . .   8
     4.6.  Local Reference Clocks  . . . . . . . . . . . . . . . . .   8
     4.7.  Traceable Reference Clocks  . . . . . . . . . . . . . . .   8
     4.8.  SDP Signalling of Timestamp Reference Clock Source  . . .   9
       4.8.1.  Examples  . . . . . . . . . . . . . . . . . . . . . .  11
   5.  Media Clock Source Signalling . . . . . . . . . . . . . . . .  12
     5.1.  Asynchronously Generated Media Clock  . . . . . . . . . .  12
     5.2.  Direct-Referenced Media Clock . . . . . . . . . . . . . .  12
     5.3.  Stream-Referenced Media Clock . . . . . . . . . . . . . .  14
     5.4.  SDP Signalling of Media Clock Source  . . . . . . . . . .  15
     5.5.  Examples  . . . . . . . . . . . . . . . . . . . . . . . .  17
   6.  Signalling Considerations . . . . . . . . . . . . . . . . . .  19
     6.1.  Usage in Offer/Answer . . . . . . . . . . . . . . . . . .  19
       6.1.1.  Indicating Support for Clock Source Signalling  . . .  20
       6.1.2.  Timestamp Reference Clock . . . . . . . . . . . . . .  20
       6.1.3.  Media Clock . . . . . . . . . . . . . . . . . . . . .  20
     6.2.  Usage Outside of Offer/Answer . . . . . . . . . . . . . .  21
   7.  Security Considerations . . . . . . . . . . . . . . . . . . .  21
   8.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  22
     8.1.  Reference Clock SDP Parameter . . . . . . . . . . . . . .  22
     8.2.  Media Clock SDP Parameter . . . . . . . . . . . . . . . .  23
     8.3.  Timestamp Reference Clock Source Parameters Registry  . .  23
     8.4.  Media Clock Source Parameters Registry  . . . . . . . . .  24
     8.5.  Source-Level Attributes . . . . . . . . . . . . . . . . .  25
       8.5.1.  Source-Level Timestamp Reference Clock Attribute  . .  25
       8.5.2.  Source-Level Media Clock Attribute  . . . . . . . . .  25
   9.  Acknowledgements  . . . . . . . . . . . . . . . . . . . . . .  25
   10. References  . . . . . . . . . . . . . . . . . . . . . . . . .  25
     10.1.  Normative References . . . . . . . . . . . . . . . . . .  25
     10.2.  Informative References . . . . . . . . . . . . . . . . .  27










Williams, et al.             Standards Track                    [Page 2]

RFC 7273               RTP Clock Source Signalling             June 2014


1.  Introduction



   RTP protocols use NTP format timestamps to facilitate multimedia
   session synchronisation and to provide estimates of round-trip time
   (RTT) and other statistical parameters.

   Information about media clock timing exchanged in NTP format
   timestamps may come from a clock that is synchronised to a global
   time reference, but this cannot be assumed, nor is there a
   standardised mechanism available to indicate that timestamps are
   derived from a common reference clock.  Therefore, RTP
   implementations typically assume that NTP timestamps are taken using
   unsynchronised clocks and must compensate for absolute time
   differences and rate differences.  Without a shared reference clock,
   RTP can time align flows from the same source at a given receiver
   using relative timing; however, tight synchronisation between two or
   more different receivers (possibly with different network paths) or
   between two or more senders is not possible.

   High performance AV systems often use a reference media clock
   distributed to all devices in the system.  The reference media clock
   may be distinct from the reference clock used to provide timestamps.
   A reference media clock may be provided along with an audio or video
   signal interface, or via a dedicated clock signal (e.g., genlock
   [SMPTE-318M-1999] or audio word clock [AES11-2009]).  If sending and
   receiving media clocks are known to be synchronised to a common
   reference clock, performance can be improved by minimising buffering
   and avoiding rate conversion.

   This specification defines SDP signalling of timestamp reference
   clock sources and media reference clock sources.

1.1.  Requirements Language



   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Applications



   Timestamp reference clock source and media clock signalling benefit
   applications requiring synchronised media capture or playout and low
   latency operation.








Williams, et al.             Standards Track                    [Page 3]

RFC 7273               RTP Clock Source Signalling             June 2014


   Examples include, but are not limited to:

   Social TV:  "Inter-Destination Media Synchronization (IDMS) Using the
      RTP Control Protocol (RTCP)" [RFC7272] defines social TV as the
      combination of media content consumption by two or more users at
      different devices and locations and real-time communication
      between those users.  An example of social TV is where two or more
      users are watching the same television broadcast at different
      devices and/or locations while communicating with each other using
      text, audio, and/or video.  A skew in the media playout of the two
      or more users can have adverse effects on their experience.  A
      well-known use case here is one friend experiencing a goal in a
      football match well before or after other friends.

   Video Walls:  A video wall consists of multiple computer monitors,
      video projectors, or television sets tiled together contiguously
      or overlapped in order to form one large screen.  Each of the
      screens reproduces a portion of the larger picture.  In some
      implementations, each screen or projector may be individually
      connected to the network and receive its portion of the overall
      image from a network-connected video server or video scaler.
      Screens are refreshed at 50 or 60 hertz or potentially faster.  If
      the refresh is not synchronised, the effect of multiple screens
      acting as one is broken.

   Networked Audio:  Networked loudspeakers, amplifiers, and analogue
      input/output (I/O) devices transmitting or receiving audio signals
      via RTP can be connected to various parts of a building or campus
      network.  Such situations can, for example, be found in large
      conference rooms, legislative chambers, classrooms (especially
      those supporting distance learning), and other large-scale
      environments such as stadiums.  Since humans are more sensitive to
      differences in audio delay, this use case needs even more accuracy
      than the video wall use case.  Depending on the exact application,
      the need for accuracy can then be in the range of microseconds
      [Olsen].

   Sensor Arrays:  Sensor arrays contain many synchronised measurement
      elements producing signals that are then combined to form an
      overall measurement.  Accurate capture of the phase relationships
      between the various signals arriving at each element of the array
      is critically important for proper operation.  Examples include
      towed or fixed sonar arrays, seismic arrays, and phased arrays
      used in radar applications, for instance.







Williams, et al.             Standards Track                    [Page 4]

RFC 7273               RTP Clock Source Signalling             June 2014


3.  Definitions



   The following definitions are used in this document:

   media level:  Media-level information applies to a single SDP media
      stream.  In an SDP description, media-level information appears
      after each "m"-line.

   multimedia session:  A set of multimedia senders and receivers as
      well as the data streams flowing from senders to receivers.  SDP
      [RFC4566] describes multimedia sessions.

   RTP media stream:  A single stream of RTP packets identified by an
      RTP Synchronisation Source (SSRC).

   RTP sender:  The device generating an associated RTP media stream.

   session level:  Session-level information applies to an entire
      multimedia session.  In an SDP description, session-level
      information appears before the first "m"-line.

   source level:  Source-level information applies to a specific RTP
      media stream.  "Source-Specific Media Attributes in the Session
      Description Protocol (SDP)" [RFC5576] defines how source-level
      information is included into an SDP session description.

   traceable time:  A clock is considered to provide traceable time if
      it can be proven to be synchronised to International Atomic Time
      (TAI).  Coordinated Universal Time (UTC) is a time standard
      synchronised to TAI.  UTC is, therefore, also considered traceable
      time once leap seconds have been taken into account.  GPS
      [IS-GPS-200F] is commonly used to provide a TAI traceable time
      reference.  Some network time synchronisation protocols (e.g.,
      Precision Time Protocol (PTP) [IEEE1588-2008] and NTP) can
      explicitly indicate that the master clock is providing a traceable
      time reference over the network.

4.  Timestamp Reference Clock Source Signalling



   The NTP format timestamps used by RTP are taken by reading a local
   real-time clock at the sender or receiver.  This local clock may be
   synchronised to another clock (time source) by some means, or it may
   be unsynchronised.  A variety of methods are available to synchronise
   local clocks to a reference time source, including network time
   protocols (e.g., NTP [RFC5905] and PTP [IEEE1588-2008]) and radio
   clocks (e.g., GPS [IS-GPS-200F]).





Williams, et al.             Standards Track                    [Page 5]

RFC 7273               RTP Clock Source Signalling             June 2014


   The following sections describe and define SDP signalling, indicating
   whether and how the local timestamping clock in an RTP sender or
   receiver is synchronised to a reference clock.

4.1.  Clock Synchronisation



   Two or more local clocks that are sufficiently synchronised will
   produce timestamps for a given RTP event that can be used as if they
   came from the same clock.  Timestamps produced in one RTP sender or
   receiver can be directly compared to a local clock in another RTP
   sender or receiver.

   The accuracy of synchronisation required is application dependent.
   See "Applications" (Section 2) for a discussion of applications and
   their corresponding requirements.  To serve as a reference clock,
   clocks must minimally be "syntonised" (exactly frequency matched) to
   one another.

   Sufficient synchronisation can typically be achieved by using a
   network time protocol (e.g., NTP, 802.1AS, and IEEE 1588-2008) to
   synchronise all devices to a single master clock.

   Another approach is to use clocks providing a global time reference
   (e.g., GPS, Galileo, and GLONASS).  This concept may be used in
   conjunction with network time protocols as some protocols (e.g., PTP
   and NTP) allow master clocks to indicate explicitly that they are
   providing traceable time.

4.2.  Identifying NTP Reference Clocks



   A single NTP server is identified by a hostname (or IP address) and
   an optional port number.  If the port number is not indicated, it is
   assumed to be the standard NTP port (123).

   Two or more NTP servers MAY be listed at the same level in the
   session description to indicate that all of the listed servers
   deliver the same reference time and may be used interchangeably.  RTP
   senders and receivers are assured proper synchronisation regardless
   of which server they choose and, in support of fault tolerance, may
   switch servers while streaming.

4.3.  Identifying PTP Reference Clocks



   The Precision Time Protocol (PTP) as standardised in IEEE 1588
   provides a shared reference clock in a network.  IEEE 1588 provides
   sub-microsecond synchronisation between devices on a LAN and
   typically locks within seconds at startup.  With support from
   Ethernet switches, IEEE 1588 protocols can achieve nanosecond timing



Williams, et al.             Standards Track                    [Page 6]

RFC 7273               RTP Clock Source Signalling             June 2014


   accuracy in LANs.  Network interface chips and cards supporting
   hardware timestamping of timing-critical protocol messages are also
   available.

   Three flavours of IEEE 1588 are in use today:

   o  IEEE 1588-2002 [IEEE1588-2002]: the original "Standard for a
      Precision Clock Synchronization Protocol for Networked Measurement
      and Control Systems".  This is also known as IEEE1588v1 or PTPv1.

   o  IEEE 1588-2008 [IEEE1588-2008]: the second version of the
      "Standard for a Precision Clock Synchronization Protocol for
      Networked Measurement and Control Systems".  This is a revised
      version of the original IEEE1588-2002 standard and is also known
      as IEEE1588v2 or PTPv2.  IEEE 1588-2008 is not protocol compatible
      with IEEE 1588-2002.

   o  IEEE 802.1AS [IEEE802.1AS-2011]: "Timing and Synchronization for
      Time Sensitive Applications in Bridged Local Area Networks".  This
      is a profile of IEEE 1588-2008 that is Layer 2 only and is for use
      in Audio/Video Bridged LANs as described in IEEE 802.1BA-2011
      [IEEE802.1BA-2011].

   Each IEEE 1588 clock is identified by a 64-bit Extended Unique
   Identifier (EUI-64) called a "ClockIdentity".  A slave clock using
   one of the IEEE 1588 family of network time protocols acquires the
   ClockIdentity of the grandmaster clock that is the ultimate source of
   timing information for the network.  A boundary clock, which is
   itself slaved to another boundary clock, or the grandmaster passes
   the grandmaster ClockIdentity through to its slaves.

   Several instances of the IEEE 1588 protocol may operate independently
   on a single network, forming distinct PTP domains, each of which may
   have a different grandmaster clock.  As the IEEE 1588 standards have
   evolved, the definition of PTP domains has changed.  IEEE 1588-2002
   identifies protocol subdomains by a textual name, but IEEE 1588-2008
   identifies protocol domains using a numeric domain number. 802.1AS is
   a Layer 2 profile of IEEE 1588-2008 supporting a single numeric clock
   domain (0).

   When PTP domains are signalled via SDP, senders and receivers SHOULD
   check that both grandmaster ClockIdentity and the PTP domain match
   when determining clock equivalence.

   Two or more IEEE 1588 clocks MAY be listed at the same level in the
   session description to indicate that all of the listed clocks are
   candidate grandmaster clocks for the domain or deliver the same
   reference time and may be used interchangeably.  RTP senders and



Williams, et al.             Standards Track                    [Page 7]

RFC 7273               RTP Clock Source Signalling             June 2014


   receivers are assured proper synchronisation regardless of which
   synchronisation source they choose and, in support of fault
   tolerance, may switch the reference clock source while streaming.

   The PTP protocols employ a distributed election protocol called the
   "Best Master Clock Algorithm" (BMCA) to determine the active clock
   master.  The clock master choices available to BMCA can be restricted
   or biased by configuration parameters to influence the election
   process.  In some systems, it may be desirable to limit the number of
   possible PTP clock masters to avoid the need to re-signal timestamp
   reference clock sources when the clock master changes.

4.4.  Identifying Global Reference Clocks



   Global reference clocks provide a source of traceable time, typically
   via a hardware radio receiver interface.  Examples include GPS,
   Galileo, and GLONASS.  Apart from the name of the reference clock
   system, no further identification is required.

4.5.  Private Reference Clocks



   In other systems, all RTP senders and receivers may use a timestamp
   reference clock that is not provided by one of the methods listed
   above.  Examples may include the reference time information provided
   by digital television or cellular services.  These sources are
   identified as "private" reference clocks.  All RTP senders and
   receivers in a session using a private reference clock are assumed to
   have a mechanism outside this specification for determining whether
   their timestamp reference clocks are equivalent.

4.6.  Local Reference Clocks



   [RFC3550] allows senders and receivers to either use a local
   wallclock reference for their NTP timestamps or, by setting the
   timestamp field to 0, supply no timestamps at all.  Both are common
   practice in embedded RTP implementations.  These clocks are
   identified as "local" and can, at best, be assumed to be equivalent
   to clocks originating from the same device.

4.7.  Traceable Reference Clocks



   A timestamp reference clock source may be labelled "traceable" if it
   is known to be delivering traceable time, provided adjustments are
   made for differing epochs, timezones, and leap seconds.  Timestamps
   taken using clocks synchronised to a traceable time source can be
   directly compared even if the clocks are synchronised to different
   sources or via different mechanisms.




Williams, et al.             Standards Track                    [Page 8]

RFC 7273               RTP Clock Source Signalling             June 2014


   Marking a clock as traceable allows additional information (e.g., IP
   addresses, PTP master identifiers, and the like) to be omitted from
   the SDP since any traceable clock available at the answerer is
   considered to be an appropriate timestamp reference clock.  For
   example, an offerer could specify ts-refclk:ntp=/traceable/ and the
   answerer could use GPS as a reference clock since GPS is a source of
   traceable time.

4.8.  SDP Signalling of Timestamp Reference Clock Source



   Specification of the timestamp reference clock source may be at any
   or all levels (session, media, or source) of an SDP description (see
   level definitions in Section 3 earlier in this document for more
   information).

   Timestamp reference clock source signalling included at the session
   level provides default parameters for all RTP sessions and sources in
   the session description.  More specific signalling included at the
   media level overrides session-level signalling.  More specific
   signalling included at the source level overrides media-level
   signalling.

   If timestamp reference clock source signalling is included anywhere
   in an SDP description, it must be properly defined for all levels in
   the description.  This may simply be achieved by providing default
   signalling at the session level.

   Timestamp reference clock parameters may be repeated at a given level
   (i.e., for a session or source) to provide information about
   additional servers or clock sources.  If the attribute is repeated at
   a given level, all clocks described at that level are assumed to be
   equivalent.  Traceable time sources MUST NOT be mixed with non-
   traceable time sources at any given level.

   Note that clock source parameters may change from time to time, for
   example, as a result of a PTP grandmaster election.  SIP [RFC3261]
   supports the re-signalling of updated SDP information; however, other
   protocols may require additional notification mechanisms.

   General forms of usage:

   session level:  a=ts-refclk:<clksrc>

   media level:  a=ts-refclk:<clksrc>

   source level:  a=ssrc:<ssrc-id> ts-refclk:<clksrc>





Williams, et al.             Standards Track                    [Page 9]

RFC 7273               RTP Clock Source Signalling             June 2014


   ABNF [RFC5234] grammar for the timestamp reference clock attribute:

   ; external references:
   POS-DIGIT   = <See RFC 4566>
   token       = <See RFC 4566>
   byte-string = <See RFC 4566>
   DIGIT       = <See RFC 5234>
   HEXDIG      = <See RFC 5234>
   CRLF        = <See RFC 5234>
   hostport    = <See RFC 3261, with revisions from RFC 5954>

   timestamp-refclk = "ts-refclk:" clksrc CRLF

   clksrc = ntp / ptp / gps / gal / glonass / local / private /
            clksrc-ext

   clksrc-ext         = clksrc-param-name clksrc-param-value
   clksrc-param-name  = token
   clksrc-param-value = ["=" byte-string ]

   ntp             = "ntp=" ntp-server-addr
   ntp-server-addr = hostport / "/traceable/"

   ptp             = "ptp=" ptp-version ":" ptp-server
   ptp-version     = "IEEE1588-2002"
                   / "IEEE1588-2008"
                   / "IEEE802.1AS-2011"
                   / ptp-version-ext
   ptp-version-ext = token

   ptp-server      = ptp-gmid [":" ptp-domain]
                   / "traceable"
   ptp-gmid        = EUI64
   ptp-domain      = ptp-domain-name / ptp-domain-nmbr

   ; PTP domain allowed characters: 0x21-0x7E (IEEE 1588-2002)
   ptp-domain-name = "domain-name=" 1*16ptp-domain-char
   ptp-domain-char = %x21-7E

   ; PTP domain allowed number range: 0-127 (IEEE 1588-2008)
   ptp-domain-nmbr = "domain-nmbr=" ptp-domain-dgts
   ptp-domain-dgts = ptp-domain-n1 / ptp-domain-n2 / ptp-domain-n3
   ptp-domain-n1   = DIGIT             ; 0-9
   ptp-domain-n2   = POS-DIGIT DIGIT   ; 10-99
   ptp-domain-n3   = ("10"/"11") DIGIT ; 100-119
                   / "12" %x30-37      ; 120-127

   gps      =  "gps"



Williams, et al.             Standards Track                   [Page 10]

RFC 7273               RTP Clock Source Signalling             June 2014


   gal      =  "gal"
   glonass  =  "glonass"
   local    =  "local"
   private  =  "private" [ ":traceable" ]

   EUI64 = 7(2HEXDIG "-") 2HEXDIG

           Figure 1: Timestamp Reference Clock Source Signalling

4.8.1.  Examples



   Figure 2 shows an example SDP description with a timestamp reference
   clock source defined at the session level.

   v=0
   o=jdoe 2890844526 2890842807 IN IP4 192.0.2.1
   s=SDP Seminar
   i=A Seminar on the session description protocol
   u=http://www.example.com/seminars/sdp.pdf
   e=j.doe@example.com (Jane Doe)
   c=IN IP4 233.252.0.1/64
   t=2873397496 2873404696
   a=recvonly
   a=ts-refclk:ntp=/traceable/
   m=audio 49170 RTP/AVP 0
   m=video 51372 RTP/AVP 99
   a=rtpmap:99 h263-1998/90000

    Figure 2: Timestamp Reference Clock Definition at the Session Level






















Williams, et al.             Standards Track                   [Page 11]

RFC 7273               RTP Clock Source Signalling             June 2014


   Figure 3 shows an example SDP description with timestamp reference
   clock definitions at the media level overriding the session-level
   defaults.

   v=0
   o=jdoe 2890844526 2890842807 IN IP4 192.0.2.1
   s=SDP Seminar
   i=A Seminar on the session description protocol
   u=http://www.example.com/seminars/sdp.pdf
   e=j.doe@example.com (Jane Doe)
   c=IN IP4 233.252.0.1/64
   t=2873397496 2873404696
   a=recvonly
   a=ts-refclk:local
   m=audio 49170 RTP/AVP 0
   a=ts-refclk:ntp=203.0.113.10
   a=ts-refclk:ntp=198.51.100.22
   m=video 51372 RTP/AVP 99
   a=rtpmap:99 h263-1998/90000
   a=ts-refclk:ptp=IEEE802.1AS-2011:39-A7-94-FF-FE-07-CB-D0

     Figure 3: Timestamp Reference Clock Definition at the Media Level

   Figure 4 shows an example SDP description with a timestamp reference
   clock definition at the source level overriding the session-level
   default.

   v=0
   o=jdoe 2890844526 2890842807 IN IP4 192.0.2.1
   s=SDP Seminar
   i=A Seminar on the session description protocol
   u=http://www.example.com/seminars/sdp.pdf
   e=j.doe@example.com (Jane Doe)
   c=IN IP4 233.252.0.1/64
   t=2873397496 2873404696
   a=recvonly
   a=ts-refclk:local
   m=audio 49170 RTP/AVP 0
   m=video 51372 RTP/AVP 99
   a=rtpmap:99 h263-1998/90000
   a=ssrc:12345 ts-refclk:ptp=IEEE802.1AS-2011:39-A7-94-FF-FE-07-CB-D0

    Figure 4: Timestamp Reference Clock Signalling at the Source Level








Williams, et al.             Standards Track                   [Page 12]

RFC 7273               RTP Clock Source Signalling             June 2014


5.  Media Clock Source Signalling



   The media clock source for a stream determines the timebase used to
   advance the RTP timestamps included in RTP packets.  The media clock
   may be asynchronously generated by the sender, it may be generated in
   fixed relationship to the reference clock, or it may be generated
   with respect to another stream on the network (which is presumably
   being received by the sender).

5.1.  Asynchronously Generated Media Clock



   In the simplest sender implementation, the sender generates media by
   sampling audio or video according to a free-running local clock.  The
   RTP timestamps in media packets are advanced according to this media
   clock, and packet transmission is typically timed to regular
   intervals on this timeline.  The sender may or may not include an NTP
   timestamp in sender reports to allow mapping of this asynchronous
   media clock to a reference clock.

   The asynchronously generated media clock is the assumed mode of
   operation when there is no signalling of the media clock source.
   Alternatively, an asynchronous media clock may be explicitly
   signalled.

      a=mediaclk:sender

5.2.  Direct-Referenced Media Clock



   A media clock may be directly derived from a reference clock.  For
   this case, it is required that a reference clock be specified with an
   a=ts-refclk attribute (Section 4.8).

   The signalling optionally indicates a media clock offset value.  The
   offset indicates the RTP timestamp value at the epoch (time of
   origin) of the reference clock.  To use the offset, implementations
   need to compute RTP timestamps from reference clocks.  To simplify
   these calculations, streams utilizing offset signalling SHOULD use a
   TAI timestamp reference clock to avoid complications introduced by
   leap seconds.  See [RFC7164] for further discussion of leap-second
   issues in timestamp reference clocks.

   To compute the RTP timestamp against an IEEE 1588 (TAI-based)
   reference, the time elapsed between the 00:00:00 1 January 1970 IEEE
   1588 epoch and the current time must be computed.  Between the epoch
   and 1 January 2013, there were 15,706 days (including extra days
   during leap years).  Since there are no leap seconds in a TAI
   reference, there are exactly 86,400 seconds during each of these days
   or a total of 1,356,998,400 seconds from the epoch to 00:00:00 1



Williams, et al.             Standards Track                   [Page 13]

RFC 7273               RTP Clock Source Signalling             June 2014


   January 2013.  A 90 kHz RTP clock for a video stream would have
   advanced 122,129,856,000,000 units over this period.  With a
   signalled offset of 0, the RTP clock value modulo the 32-bit unsigned
   RTP timestamp representation in the RTP header would have been
   2,460,938,240 at 00:00:00 1 January 2013.  If an offset of 23,465 had
   been signalled, the clock value would have been 2,460,961,705.

   In order to use an NTP reference, the actual time elapsed between the
   00:00:00 1 January 1900 NTP epoch to the current time must be
   computed. 2,208,988,800 seconds elapsed between the NTP epoch and
   00:00:00 1 January 1970 [RFC0868].  Between the beginning of 1970 and
   2013, there were 15,706 days elapsed (including extra days during
   leap years) and 25 leap seconds inserted.  There is, therefore, a
   total of 3,565,987,225 seconds from the NTP epoch to 00:00:00 1
   January 2013.  A 90 kHz RTP clock for a video stream would have
   advanced 320,938,850,250,000 units over this period.  With a
   signalled offset of 0, the RTP clock value modulo the 32-bit unsigned
   representation would have been 1,714,023,696 at 00:00:00 1 January
   2013.

   If no offset is signalled, the offset can be inferred at the receiver
   by examining RTCP sender reports that contain NTP and RTP timestamps,
   which combined define a mapping.  The NTP/RTP timestamp mapping
   provided by RTCP sender reports (SRs) takes precedence over that
   signalled through SDP; however, the media clock rate implied by the
   SRs MUST be consistent with the rate signalled.

   A rate modifier may be specified.  The modifier is expressed as the
   ratio of two integers and modifies the rate specified or implied by
   the media description by this ratio.  If omitted, the rate is assumed
   to be the exact rate specified or implied by the media format.  For
   example, without a rate specification, the RTP clock for an 8 kHz
   G.711 audio stream will advance exactly 8000 units for each second
   advance in the reference clock from which it is derived.

   The rate modifier is primarily useful for accommodating certain
   "oddball" audio sample rates associated with NTSC video (see
   Figure 7).  Modified rates are not advised for video streams that
   generally use a 90 kHz RTP clock regardless of frame rate or sample
   rate used for embedded audio.

      a=mediaclk:direct[=<offset>] [rate=<rate numerator>/<rate
      denominator>]








Williams, et al.             Standards Track                   [Page 14]

RFC 7273               RTP Clock Source Signalling             June 2014


5.3.  Stream-Referenced Media Clock



   A common synchronisation architecture for audio/visual systems
   involves distributing a reference media clock from a master device to
   a number of slave devices, typically by means of a cable.  Examples
   include audio word clock distribution and video black burst
   distribution.  In this case, the media clock is locally generated,
   often by a crystal oscillator, and is not locked to a timestamp
   reference clock.

   To support this architecture across a network, a master clock
   identifier is associated with an RTP media stream carrying media
   clock timing information from a master device.  The master clock
   identifier represents a media clock source in the master device.
   Slave devices in turn associate the master media clock identifier
   with streams they transmit, signalling the synchronisation
   relationship between the master and the transmitter's media clock.

   Slave devices recover media clock timing from the clock master
   stream, using it to synchronise the slave's media clock with the
   master.  If a common reference clock is available, NTP timestamps in
   the master clock RTP media stream are taken using the shared
   reference clock.  The NTP timestamps communicate information about
   media clock timing (rate and phase) from the master to the slave
   devices.  NTP timestamps are communicated in the usual RTP fashion
   via RTCP SRs, or via the [RFC6051] header extension.  If no shared
   reference clock is available or signalled, a slave can synchronise to
   the master's media clock using RTP timestamps alone as described in
   Section 5.1 of [RFC3550].

   Note that the slaving of a device media clock to a master device does
   not affect RTP inter-media synchronisation.  Time-aligned playout of
   two or more RTP sources still relies upon NTP timestamps supplied via
   RTCP SRs or by the RFC 6051 timestamp header extension.

   In a given system, master clock identifiers must uniquely identify a
   single media clock source.  Such identifiers MAY be manually
   configured; however, identifiers SHOULD be generated according to the
   "short-term persistent RTCP CNAME" algorithm as described in
   [RFC7022].  Master clock identifiers not already in base64 format
   MUST be encoded as base64 strings when used in SDP.  Although the
   CNAME algorithm is used to generate the master clock identifier, it
   is used to tag RTP sources in SDP descriptions and does not appear in
   RTCP as a CNAME.

   A reference stream can be an RTP stream or an Audio Video Bridging
   (AVB) stream based on the [IEEE1722] standard.




Williams, et al.             Standards Track                   [Page 15]

RFC 7273               RTP Clock Source Signalling             June 2014


   An RTP clock master stream SHOULD be identified at the source level
   by an SSRC [RFC5576] and master clock identifier.  An RTP stream that
   provides media clock timing directly from a reference media clock
   (e.g., internal crystal, audio word clock, or video black burst
   signal) SHOULD tag the stream as a master clock source using the
   "src:" prefix.  If master clock identifiers are declared at the media
   or session level, all RTP sources at or below the level of
   declaration MUST provide equivalent timing to a slave receiver.

      a=ssrc:<ssrc> mediaclk:id=src:<media-clktag> sender

      a=mediaclk:id=src:<media-clktag> sender

   A transmitted RTP stream slaved to the media clock master is
   signalled by including a master clock identifier:

      a=mediaclk:id=<media-clktag> sender

   An RTP media sender indicates that it is slaved to an IEEE 1722 clock
   master via a stream identifier (an EUI-64):

      a=mediaclk:IEEE1722=<StreamID>

   An RTP media sender may gateway IEEE 1722 media clock timing to RTP:

      a=mediaclk:id=src:<media-clktag> IEEE1722=<StreamID>

5.4.  SDP Signalling of Media Clock Source



   Specification of the media clock source may be at any or all levels
   (session, media, or source) of an SDP description (see level
   definitions (Section 3) earlier in this document for more
   information).

   Media clock source signalling included at session level provides
   default parameters for all RTP sessions and sources in the session
   description.  More specific signalling included at the media level
   overrides session-level signalling.  Further, source-level signalling
   overrides media clock source signalling at the enclosing media level
   and session level.

   Media clock source signalling may be present or absent on a per-
   stream basis.  In the absence of media clock source signals,
   receivers assume an asynchronous media clock generated by the sender.

   Media clock source parameters may be repeated at a given level (i.e.,
   for a session or source) to provide information about additional
   clock sources.  If the attribute is repeated at a given level, all



Williams, et al.             Standards Track                   [Page 16]

RFC 7273               RTP Clock Source Signalling             June 2014


   clocks described at that level are comparable clock sources and may
   be used interchangeably.

   General forms of usage:

   session level:  a=mediaclk:<mediaclock>

   media level:  a=mediaclk:<mediaclock>

   source level:  a=ssrc:<ssrc-id> mediaclk:<mediaclock>

   ABNF [RFC5234] grammar for the media clock reference attribute:

   ; external references:
   integer     = <See RFC 4566>
   token       = <See RFC 4566>
   byte-string = <See RFC 4566>
   base64      = <See RFC 4566>
   SP          = <See RFC 5234>
   DIGIT       = <See RFC 5234>
   HEXDIG      = <See RFC 5234>

   media-clksrc = "mediaclk:" [media-clkid SP] mediaclock

   media-clkid  = "id=" [ "src:" ] media-clktag
   media-clktag = base64

   mediaclock   = sender / direct / ieee1722-streamid / mediaclock-ext

   mediaclock-ext         = mediaclock-param-name mediaclock-param-value
   mediaclock-param-name  = token
   mediaclock-param-value = [ "=" byte-string ]

   sender = "sender"
   direct = "direct" [ "=" 1*DIGIT ] [SP rate]
   rate   = "rate=" integer "/" integer

   ieee1722-streamid = "IEEE1722=" avb-stream-id
   avb-stream-id     = EUI64
   EUI64 = 7(2HEXDIG "-") 2HEXDIG

                  Figure 5: Media Clock Source Signalling









Williams, et al.             Standards Track                   [Page 17]

RFC 7273               RTP Clock Source Signalling             June 2014


5.5.  Examples



   Figure 6 shows an example SDP description -- 8 channels of 24-bit, 48
   kHz audio transmitted as a multicast stream.  Media clock is derived
   directly from an IEEE 1588-2008 reference.

   v=0
   o=- 1311738121 1311738121 IN IP4 192.0.2.1
   c=IN IP4 233.252.0.1/64
   s=
   t=0 0
   m=audio 5004 RTP/AVP 96
   a=rtpmap:96 L24/48000/8
   a=sendonly
   a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
   a=mediaclk:direct=963214424

        Figure 6: Media Clock Directly Referenced to IEEE 1588-2008

   Figure 7 shows an example SDP description -- 2 channels of 24-bit,
   44056 kHz NTSC "pull-down" media clock derived directly from an IEEE
   1588-2008 reference clock.

   v=0
   o=- 1311738121 1311738121 IN IP4 192.0.2.1
   c=IN IP4 233.252.0.1/64
   s=
   t=0 0
   m=audio 5004 RTP/AVP 96
   a=rtpmap:96 L24/44100/2
   a=sendonly
   a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
   a=mediaclk:direct=963214424 rate=1000/1001

   Figure 7: "Oddball" Sample Rate Directly Referenced to IEEE 1588-2008
















Williams, et al.             Standards Track                   [Page 18]

RFC 7273               RTP Clock Source Signalling             June 2014


   Figure 8 shows the same 48 kHz audio transmission from Figure 6 with
   media clock derived from another RTP stream.

   v=0
   o=- 1311738121 1311738121 IN IP4 192.0.2.1
   c=IN IP4 233.252.0.1/64
   s=
   t=0 0
   m=audio 5004 RTP/AVP 96
   a=rtpmap:96 L24/48000/2
   a=sendonly
   a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
   a=mediaclk:id=MDA6NjA6MmI6MjA6MTI6MWY= sender

         Figure 8: RTP Stream with Media Clock Slaved to a Master

   Figure 9 shows the same 48 kHz audio transmission from Figure 6 with
   media clock derived from an IEEE 1722 AVB stream.

   v=0
   o=- 1311738121 1311738121 IN IP4 192.0.2.1
   c=IN IP4 233.252.0.1/64
   s=
   t=0 0
   m=audio 5004 RTP/AVP 96
   a=rtpmap:96 L24/48000/2
   a=sendonly
   a=ts-refclk:ptp=IEEE1588-2008:39-A7-94-FF-FE-07-CB-D0:0
   a=mediaclk:IEEE1722=38-D6-6D-8E-D2-78-13-2F

            Figure 9: RTP Stream with Media Clock Slaved to an
                          IEEE 1722 Master Device

6.  Signalling Considerations



   Signalling of timestamp reference clock source (Section 4.8) and
   media clock source (Section 5.4) is defined to be used either by
   applications that implement the SDP Offer/Answer model [RFC3264] or
   by applications that use SDP to describe media and transport
   configurations.

   A description SHOULD include both reference clock signalling and
   media clock signalling.  If no reference clock is available, this
   SHOULD be signalled as a local reference (Section 4.6).







Williams, et al.             Standards Track                   [Page 19]

RFC 7273               RTP Clock Source Signalling             June 2014


   When no media clock signalling is present, an asynchronous media
   clock (Section 5.1) MUST be assumed.  When no reference clock
   signalling is present, a local reference clock (Section 4.6) MUST be
   assumed.

   If a reference clock is not signalled or a local reference is
   specified, the corresponding media clock may be established as rate
   synchronised with no assurance of time synchronisation.

   When the description signals a direct-referenced media clock
   (Section 5.2), reference clock signalling is REQUIRED.  Asynchronous
   and stream-referenced media clocks (Section 5.3) MAY be specified
   with or without a reference clock signalling.

6.1.  Usage in Offer/Answer



   During offer/answer, clock source signalling via SDP uses a
   declarative model.  Supported media and/or reference clocks are
   specified in the offered SDP description.  The answerer may accept or
   reject the offer in an application-specific way depending on the
   clocks that are available and the clocks that are offered.  For
   example, an answerer may choose to accept an offer that lacks a
   common clock by falling back to a lower-performance mode of operation
   (e.g., by assuming reference or media clocks are local rather than
   shared).  Conversely, the answerer may choose to reject the offer
   when the offered clock specifications indicate that the available
   reference and/or media clocks are incompatible.

   While negotiation of reference clock and media clock attributes is
   not defined in this document, negotiation MAY be accomplished using
   the capabilities negotiation procedures defined in [RFC5939].

6.1.1.  Indicating Support for Clock Source Signalling



   An offerer or answerer indicates support for media clock signalling
   by including a reference or media clock specification in the SDP
   description.  An offerer or answerer without specific reference or
   media clocks to signal SHOULD indicate support for clock source
   signalling by including a local reference clock (Section 4.6)
   specification in the SDP description.

6.1.2.  Timestamp Reference Clock



   If one or more of the reference clocks specified in the offer are
   usable by the answerer, the answerer SHOULD respond with an answer
   containing the subset of reference clock specifications in the offer
   that are usable by the answerer.  If the answerer rejects the offer
   because the available reference clocks are incompatible, the



Williams, et al.             Standards Track                   [Page 20]

RFC 7273               RTP Clock Source Signalling             June 2014


   rejection MUST contain at least one timestamp reference clock
   specification usable by the answerer so that appropriate information
   is available for diagnostics.  If no external reference clock is
   available to the answerer, a local reference clock (Section 4.6)
   specification SHOULD be included in the rejection.

   In both offers and answers, multiple reference clock specifications
   indicate equivalent clocks from different sources that may be used
   interchangeably.  RTP senders and receivers are assured proper
   synchronisation regardless of which of the specified sources is
   chosen and, in support of fault tolerance, may switch clock sources
   while streaming.

6.1.3.  Media Clock



   If the media clock mode specified in the offer is acceptable to the
   answerer, the answerer SHOULD respond with an answer containing the
   same media clock specification as the offer.  If the answerer rejects
   the offer because the available reference clocks are incompatible,
   the rejection MUST contain a media clock specification supported by
   the answerer so that appropriate information is available for
   diagnostics.  If no shared media clocks are available to the
   answerer, an asynchronous media clock (Section 5.1) specification
   SHOULD be included in the rejection.

6.2.  Usage Outside of Offer/Answer



   SDP can be employed outside of the offer/answer context, for
   instance, for multimedia sessions that are announced through the
   Session Announcement Protocol (SAP) [RFC2974] or streamed through the
   Real Time Streaming Protocol (RTSP) [RFC2326].

   Devices using published descriptions to join sessions SHOULD assess
   their synchronisation compatibility with the described session based
   on the clock source signalling and SHOULD NOT attempt to join a
   session with incompatible reference or media clocks.

7.  Security Considerations



   Entities receiving and acting upon an SDP message should note that a
   session description cannot be trusted unless it has been obtained by
   an authenticated transport protocol from a known and trusted source.
   Many different transport protocols may be used to distribute a
   session description, and the nature of the authentication will differ
   from transport to transport.  For some transports, security features
   are often not deployed.  In case a session description has not been
   obtained in a trusted manner, the endpoint should exercise care
   because, among other attacks, the media sessions received may not be



Williams, et al.             Standards Track                   [Page 21]

RFC 7273               RTP Clock Source Signalling             June 2014


   the intended ones, the destination where media is sent to may not be
   the expected one, and any of the parameters of the session may be
   incorrect.

   Incorrect reference or media clock parameters may cause devices or
   streams to synchronise to unintended clock sources.  Normally, this
   simply results in failure to establish a session or failure to
   synchronise once connected.  Enough devices fraudulently assigned to
   a specific clock source (e.g., a particular IEEE 1588 grandmaster)
   may, however, constitute a successful denial-of-service attack on
   that source.  Devices MAY wish to validate the integrity of the clock
   description through some means before connecting to unfamiliar clock
   sources.

   The timestamp reference clocks negotiated by this protocol are used
   to provide media timing information to RTP.  Negotiated timestamp
   reference clocks should not be relied upon to provide a secure time
   reference for security critical operations (e.g., the expiration of
   public key certificates).

8.  IANA Considerations



   This document defines two new SDP attributes: "ts-refclk" and
   "mediaclk", within the existing Internet Assigned Numbers Authority
   (IANA) registry of SDP Parameters.

   This document also defines a new IANA registry subordinate to the
   IANA SDP Parameters registry: the Media Clock Source Parameters
   registry.  Within this new registry, this document defines an initial
   set of three media clock source parameters.  Further, this document
   defines a second new IANA registry subordinate to the IANA SDP
   Parameters registry: the Timestamp Reference Clock Source Parameters
   registry.  Within this new registry, this document defines an initial
   six parameters.

















Williams, et al.             Standards Track                   [Page 22]

RFC 7273               RTP Clock Source Signalling             June 2014


8.1.  Reference Clock SDP Parameter



   The SDP attribute "ts-refclk" defined by this document is registered
   with the IANA registry of SDP Parameters as follows:

   SDP Attributes ( "att-field (both session and media level)" &
                    "att-field (source level)" ):

     Attribute name:     ts-refclk

     Long form:          Timestamp reference clock source

     Type of name:       att-field

     Type of attribute:  Session, media, and source level

     Subject to charset: No

     Purpose:            See Section 4 of this document

     Reference:          This document

     Values:             See Section 8.3 of this document

        Figure 10: Reference Clock SDP Parameter IANA Registration

   The attribute has an extensible parameter field; therefore, a
   registry for these parameters is required.  This new registry is
   defined in Section 8.3.






















Williams, et al.             Standards Track                   [Page 23]

RFC 7273               RTP Clock Source Signalling             June 2014


8.2.  Media Clock SDP Parameter



   The SDP attribute "mediaclk" defined by this document is registered
   with the IANA registry of SDP Parameters as follows:

   SDP Attributes ( "att-field (both session and media level)" &
                    "att-field (source level)" ):

     Attribute name:     mediaclk

     Long form:          Media clock source

     Type of name:       att-field

     Type of attribute:  Session, media, and source level

     Subject to charset: No

     Purpose:            See Section 5 of this document

     Reference:          This document

     Values:             See Section 8.4 of this document

          Figure 11: Media Clock SDP Parameter IANA Registration

   The attribute has an extensible parameter field; therefore, a
   registry for these parameters is required.  The new registry is
   defined in Section 8.4.

8.3.  Timestamp Reference Clock Source Parameters Registry



   This document creates a new IANA subregistry called the Timestamp
   Reference Clock Source Parameters registry, subordinate to the IANA
   SDP Parameters registry.  Each entry in the Timestamp Reference Clock
   Source Parameters registry contains:

   Name:       Token used in the SDP description (clksrc-param-name)

   Long name:  Descriptive name for the timestamp reference clock source

   Reference:  Reference to the document describing the
               SDP token (clksrc-param-name) and syntax for the optional
               value associated with the token (mediaclock-param-value)







Williams, et al.             Standards Track                   [Page 24]

RFC 7273               RTP Clock Source Signalling             June 2014


   Initial values for the Timestamp Reference Clock Source Parameters
   registry are given below.

   Future assignments are to be made through the Specification Required
   policy [RFC5226].  The Name field in the table corresponds to a new
   value corresponding to clksrc-param-name.  The Reference must specify
   a syntax corresponding to clksrc-param-value.

   +---------+------------------------------+--------------------------+
   | Name    | Long Name                    | Reference                |
   +---------+------------------------------+--------------------------+
   | ntp     | Network Time Protocol        | This document, Section 4 |
   |         |                              |                          |
   | ptp     | Precision Time Protocol      | This document, Section 4 |
   |         |                              |                          |
   | gps     | Global Positioning System    | This document, Section 4 |
   |         |                              |                          |
   | gal     | Galileo                      | This document, Section 4 |
   |         |                              |                          |
   | glonass | Global Navigation Satellite  | This document, Section 4 |
   |         | System                       |                          |
   |         |                              |                          |
   | local   | Local Clock                  | This document, Section 4 |
   |         |                              |                          |
   | private | Private Clock                | This document, Section 4 |
   +---------+------------------------------+--------------------------+

8.4.  Media Clock Source Parameters Registry



   This document creates a new IANA subregistry called the Media Clock
   Source Parameters registry, subordinate to the IANA SDP Parameters
   registry.  Each entry in the Media Clock Source Parameters registry
   contains:

   Name:       Token used in the SDP description (mediaclock-param-name)

   Long name:  Descriptive name for the media clock source type

   Reference:  Reference to the document describing the SDP token
               (mediaclock-param-name) and syntax for the optional
               value associated with the token (mediaclock-param-value)

   Initial values for the Media Clock Source Parameters registry are
   given below.







Williams, et al.             Standards Track                   [Page 25]

RFC 7273               RTP Clock Source Signalling             June 2014


   Future assignments are to be made through the Specification Required
   policy [RFC5226].  The Name field in the table corresponds to a new
   value corresponding to mediaclock-param-name.  The Reference must
   specify a syntax corresponding to mediaclock-param-value.

   +----------+-----------------------------+--------------------------+
   | Name     | Long Name                   | Reference                |
   +----------+-----------------------------+--------------------------+
   | sender   | Asynchronously Generated    | This document, Section 5 |
   |          | Media Clock                 |                          |
   |          |                             |                          |
   | direct   | Direct-Referenced Media     | This document, Section 5 |
   |          | Clock                       |                          |
   |          |                             |                          |
   | IEEE1722 | IEEE1722 Media Stream       | This document, Section 5 |
   |          | Identifier                  |                          |
   +----------+-----------------------------+--------------------------+

8.5.  Source-Level Attributes



   [RFC5576] requires new source-level attributes to be registered with
   the IANA registry named "att-field (source level)".

8.5.1.  Source-Level Timestamp Reference Clock Attribute



   The source-level SDP attribute "ts-refclk" defined by this document
   is registered with the "att-field (source level)" IANA registry of
   SDP Parameters, according to Figure 10.

8.5.2.  Source-Level Media Clock Attribute



   The source-level SDP attribute "mediaclk" defined by this document is
   registered with the "att-field (source level)" IANA registry of SDP
   Parameters, according to Figure 11.

9.  Acknowledgements



   The authors would like to thank Magnus Westerlund and Paul Kyzivat
   for valuable comments that resulted in important improvements to this
   document.











Williams, et al.             Standards Track                   [Page 26]

RFC 7273               RTP Clock Source Signalling             June 2014


10.  References



10.1.  Normative References



   [IEEE1588-2002]
              IEEE, "1588-2002 - IEEE Standard for a Precision Clock
              Synchronization Protocol for Networked Measurement and
              Control Systems", October 2002,
              <http://standards.ieee.org/findstds/
              standard/1588-2002.html>.

   [IEEE1588-2008]
              IEEE, "1588-2008 - IEEE Standard for a Precision Clock
              Synchronization Protocol for Networked Measurement and
              Control Systems", July 2008,
              <http://standards.ieee.org/findstds/
              standard/1588-2008.html>.

   [IEEE1722] IEEE, "1722-2001 - IEEE Standard for Layer 2 Transport
              Protocol for Time Sensitive Applications in a Bridged
              Local Area Network", May 2011,
              <http://standards.ieee.org/findstds/
              standard/1722-2011.html>.

   [IEEE802.1AS-2011]
              IEEE, "802.1AS-2011 - IEEE Standard for Local and
              Metropolitan Area Networks - Timing and Synchronization
              for Time-Sensitive Applications in Bridged Local Area
              Networks", February 2011,
              <http://standards.ieee.org/findstds/
              standard/802.1AS-2011.html>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [RFC3264]  Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model
              with Session Description Protocol (SDP)", RFC 3264, June
              2002.

   [RFC3550]  Schulzrinne, H., Casner, S., Frederick, R., and V.
              Jacobson, "RTP: A Transport Protocol for Real-Time
              Applications", STD 64, RFC 3550, July 2003.

   [RFC4566]  Handley, M., Jacobson, V., and C. Perkins, "SDP: Session
              Description Protocol", RFC 4566, July 2006.






Williams, et al.             Standards Track                   [Page 27]

RFC 7273               RTP Clock Source Signalling             June 2014


   [RFC5226]  Narten, T. and H. Alvestrand, "Guidelines for Writing an
              IANA Considerations Section in RFCs", BCP 26, RFC 5226,
              May 2008.

   [RFC5234]  Crocker, D. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234, January 2008.

   [RFC5576]  Lennox, J., Ott, J., and T. Schierl, "Source-Specific
              Media Attributes in the Session Description Protocol
              (SDP)", RFC 5576, June 2009.

   [RFC5905]  Mills, D., Martin, J., Burbank, J., and W. Kasch, "Network
              Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, June 2010.

   [RFC6051]  Perkins, C. and T. Schierl, "Rapid Synchronisation of RTP
              Flows", RFC 6051, November 2010.

   [RFC7022]  Begen, A., Perkins, C., Wing, D., and E. Rescorla,
              "Guidelines for Choosing RTP Control Protocol (RTCP)
              Canonical Names (CNAMEs)", RFC 7022, September 2013.

10.2.  Informative References



   [AES11-2009]
              Audio Engineering Society, "AES11-2009: AES recommended
              practice for digital audio engineering - Synchronization
              of digital audio equipment in studio operations", February
              2010, <http://www.aes.org/standards/>.

   [IEEE802.1BA-2011]
              IEEE, "802.1BA-2011 - IEEE Standard for Local and
              metropolitan area networks -- Audio Video Bridging (AVB)
              Systems", September 2011,
              <http://standards.ieee.org/findstds/
              standard/802.1BA-2011.html>.

   [IS-GPS-200F]
              Global Positioning Systems Directorate, "Navstar GPS Space
              Segment/Navigation User Segment Interfaces", IS-GPS-200F ,
              September 2011,
              <http://www.navcen.uscg.gov/pdf/IS-GPS-200F.pdf>.

   [Olsen]    Olsen, D., "Time Accuracy Requirements in Audio Networks",
              April 2007,
              <http://www.ieee802.org/1/files/public/docs2007/
              as-dolsen-time-accuracy-0407.pdf>.




Williams, et al.             Standards Track                   [Page 28]

RFC 7273               RTP Clock Source Signalling             June 2014


   [RFC0868]  Postel, J. and K. Harrenstien, "Time Protocol", STD 26,
              RFC 868, May 1983.

   [RFC2326]  Schulzrinne, H., Rao, A., and R. Lanphier, "Real Time
              Streaming Protocol (RTSP)", RFC 2326, April 1998.

   [RFC2974]  Handley, M., Perkins, C., and E. Whelan, "Session
              Announcement Protocol", RFC 2974, October 2000.

   [RFC3261]  Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
              A., Peterson, J., Sparks, R., Handley, M., and E.
              Schooler, "SIP: Session Initiation Protocol", RFC 3261,
              June 2002.

   [RFC5939]  Andreasen, F., "Session Description Protocol (SDP)
              Capability Negotiation", RFC 5939, September 2010.

   [RFC7164]  Gross, K. and R. Brandenburg, "RTP and Leap Seconds", RFC
              7164, March 2014.

   [RFC7272]  Brandenburg, R., Stokking, H., Deventer, O., Boronat, F.,
              Montagud, M., and K. Gross, "Inter-Destination Media
              Synchronization (IDMS) Using the RTP Control Protocol
              (RTCP)", RFC 7272, June 2014.

   [SMPTE-318M-1999]
              Society of Motion Picture & Television Engineers,
              "Television and Audio - Synchronization of 59.94- or 50-Hz
              Related Video and Audio Systems in Analog and Digital
              Areas - Reference Signals", ST 318:1999,
              <http://standards.smpte.org/>.




















Williams, et al.             Standards Track                   [Page 29]

RFC 7273               RTP Clock Source Signalling             June 2014


Authors' Addresses



   Aidan Williams
   Audinate
   Level 1, 458 Wattle St
   Ultimo, NSW  2007
   Australia

   Phone: +61 2 8090 1000
   Fax:   +61 2 8090 1001
   EMail: aidan.williams@audinate.com
   URI:   http://www.audinate.com/


   Kevin Gross
   AVA Networks
   Boulder, CO
   US

   EMail: kevin.gross@avanw.com
   URI:   http://www.avanw.com/

   Ray van Brandenburg
   TNO
   Brassersplein 2
   Delft  2612CT
   The Netherlands

   Phone: +31-88-866-7000
   EMail: ray.vanbrandenburg@tno.nl


   Hans Stokking
   TNO
   Brassersplein 2
   Delft  2612CT
   The Netherlands

   EMail: hans.stokking@tno.nl












Williams, et al.             Standards Track                   [Page 30]