Internet Engineering Task Force (IETF) M. Sweet Request for Comments: 8010 Apple Inc. Obsoletes: 2910, 3382 I. McDonald Category: Standards Track High North, Inc. ISSN: 2070-1721 January 2017
Internet Printing Protocol/1.1: Encoding and Transport
Abstract
The Internet Printing Protocol (IPP) is an application-level protocol for distributed printing using Internet tools and technologies. This document defines the rules for encoding IPP operations, attributes, and values into the Internet MIME media type called "application/ipp". It also defines the rules for transporting a message body whose Content-Type is "application/ipp" over HTTP and/or HTTPS. The IPP data model and operation semantics are described in "Internet Printing Protocol/1.1: Model and Semantics" (RFC 8011).
This document obsoletes RFCs 2910 and 3382.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc8010.
Sweet & McDonald Standards Track [Page 1]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document contains the rules for encoding IPP operations and describes two layers: the transport layer and the operation layer.
The transport layer consists of an HTTP request and response. All IPP implementations support HTTP/1.1, the relevant parts of which are described in the following RFCs:
o Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing [RFC7230]
o Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content [RFC7231]
o Hypertext Transfer Protocol (HTTP/1.1): Conditional Requests [RFC7232]
o Hypertext Transfer Protocol (HTTP/1.1): Caching [RFC7234]
o Hypertext Transfer Protocol (HTTP/1.1): Authentication [RFC7235]
o The 'Basic' HTTP Authentication Scheme [RFC7617]
This document specifies the HTTP headers that an IPP implementation supports.
The operation layer consists of a message body in an HTTP request or response. The "Internet Printing Protocol/1.1: Model and Semantics" document [RFC8011] and subsequent extensions (collectively known as the IPP Model) define the semantics of such a message body and the supported values. This document specifies the encoding of an IPP request and response message.
Sweet & McDonald Standards Track [Page 4]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
Client: Initiator of outgoing IPP session requests and sender of outgoing IPP operation requests (Hypertext Transfer Protocol -- HTTP/1.1 [RFC7230] User Agent).
Document: An object created and managed by a Printer that contains description, processing, and status information. A Document object may have attached data and is bound to a single Job.
Job: An object created and managed by a Printer that contains description, processing, and status information. The Job also contains zero or more Document objects.
Logical Device: A print server, software service, or gateway that processes Jobs and either forwards or stores the processed Job or uses one or more Physical Devices to render output.
Model: The semantics of operations, attributes, values, and status- codes used in the Internet Printing Protocol as defined in the Internet Printing Protocol/1.1: Model and Semantics document [RFC8011] and subsequent extensions.
Output Device: A single Logical or Physical Device.
Physical Device: A hardware implementation of an endpoint device, e.g., a marking engine, a fax modem, etc.
Printer: Listener for incoming IPP session requests and receiver of incoming IPP operation requests (Hypertext Transfer Protocol -- HTTP/1.1 [RFC7230] Server) that represents one or more Physical Devices or a Logical Device.
Sweet & McDonald Standards Track [Page 5]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
The operation layer is the message body part of the HTTP request or response and it MUST contain a single IPP operation request or IPP operation response. Each request or response consists of a sequence of values and attribute groups. Attribute groups consist of a sequence of attributes each of which is a name and value. Names and values are ultimately sequences of octets.
The encoding consists of octets as the most primitive type. There are several types built from octets, but three important types are integers, character strings, and octet strings, on which most other
Sweet & McDonald Standards Track [Page 6]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
data types are built. Every character string in this encoding MUST be a sequence of characters where the characters are associated with some charset [RFC2978] and some natural language. A character string MUST be in "reading order" with the first character in the value (according to reading order) being the first character in the encoding. A character string whose associated charset is US-ASCII and whose associated natural language is US English is henceforth called a US-ASCII-STRING. A character string whose associated charset and natural language are specified in a request or response as described in the Model is henceforth called a LOCALIZED-STRING. An octet string MUST be in "Model order" with the first octet in the value (according to the Model order) being the first octet in the encoding. Every integer in this encoding MUST be encoded as a signed integer using two's-complement binary encoding with big-endian format (also known as "network order" and "most significant byte first"). The number of octets for an integer MUST be 1, 2, or 4, depending on usage in the protocol. A one-octet integer, henceforth called a SIGNED-BYTE, is used for the version-number and tag fields. A two- byte integer, henceforth called a SIGNED-SHORT, is used for the operation-id, status-code, and length fields. A four-byte integer, henceforth called a SIGNED-INTEGER, is used for value fields and the request-id.
The following two sections present the encoding of the operation layer in two ways:
o informally through pictures and description
o formally through Augmented Backus-Naur Form (ABNF), as specified by RFC 5234 [RFC5234]
An operation request or response MUST use the encoding described in these two sections.
Sweet & McDonald Standards Track [Page 7]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
The first three fields in the above diagram contain the value of attributes described in Section 4.1.1 of the Model and Semantics document [RFC8011].
The fourth field is the "attribute-group" field, and it occurs 0 or more times. Each "attribute-group" field represents a single group of attributes, such as an Operation Attributes group or a Job Attributes group (see the Model). The Model specifies the required attribute groups and their order for each operation request and response.
The "end-of-attributes-tag" field is always present, even when the "data" is not present. The Model specifies whether the "data" field is present for each operation request and response.
Sweet & McDonald Standards Track [Page 8]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
----------------------------------------------- | attribute-with-one-value | q bytes ---------------------------------------------------------- | additional-value | r bytes |- 0 or more ----------------------------------------------------------
Figure 3: Attribute Encoding
When an attribute is single valued (e.g., "copies" with a value of 10) or multi-valued with one value (e.g., "sides-supported" with just the value 'one-sided'), it is encoded with just an "attribute-with- one-value" field. When an attribute is multi-valued with n values (e.g., "sides-supported" with the values 'one-sided' and 'two-sided- long-edge'), it is encoded with an "attribute-with-one-value" field followed by n-1 "additional-value" fields.
Sweet & McDonald Standards Track [Page 9]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Each "additional-value" field is encoded as follows:
----------------------------------------------- | value-tag | 1 byte ----------------------------------------------- | name-length (value is 0x0000) | 2 bytes ----------------------------------------------- | value-length (value is w) | 2 bytes ----------------------------------------------- | value | w bytes -----------------------------------------------
Figure 5: Additional Attribute Value Encoding
An "additional-value" is encoded with four subfields:
o The "value-tag" field specifies the attribute syntax, e.g., 0x44 for the attribute syntax 'keyword'.
o The "name-length" field has the value of 0 in order to signify that it is an "additional-value". The value of the "name-length" field distinguishes an "additional-value" field ("name-length" is 0) from an "attribute-with-one-value" field ("name-length" is not 0).
o The "value-length" field specifies the length of the "value" field in bytes, e.g., w in the above diagram or 19 for the (keyword) value 'two-sided-long-edge'.
o The "value" field contains the value of the attribute, e.g., the textual value 'two-sided-long-edge'.
Sweet & McDonald Standards Track [Page 11]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Collection attributes create a named group containing related "member" attributes. The "attribute-with-one-value" field for a collection attribute is encoded as follows:
----------------------------------------------- | value-tag (value is 0x34) | 1 byte ----------------------------------------------- | name-length (value is u) | 2 bytes ----------------------------------------------- | name | u bytes ----------------------------------------------- | value-length (value is 0x0000) | 2 bytes ----------------------------------------------------------- | member-attribute | q bytes |-0 or more ----------------------------------------------------------- | end-value-tag (value is 0x37) | 1 byte ----------------------------------------------- | end-name-length (value is 0x0000) | 2 bytes ----------------------------------------------- | end-value-length (value is 0x0000) | 2 bytes -----------------------------------------------
Figure 6: Collection Attribute Encoding
Collection attribute is encoded with eight subfields:
o The "value-tag" field specifies the start attribute syntax: 0x34 for the attribute syntax 'begCollection'.
o The "name-length" field specifies the length of the "name" field in bytes, e.g., u in the above diagram or 9 for the name "media- col". Additional collection attribute values use a name length of 0x0000.
o The "name" field contains the textual name of the attribute, e.g., "media-col".
o The "value-length" field specifies a length of 0x0000.
o The "member-attribute" field contains member attributes encoded as defined in Section 3.1.7.
o The "end-value-tag" field specifies the end attribute syntax: 0x37 for the attribute syntax 'endCollection'.
o The "end-name-length" field specifies a length of 0x0000.
Sweet & McDonald Standards Track [Page 12]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
o The "end-value-length" field specifies a length of 0x0000.
Each "member-attribute" field is encoded as follows:
----------------------------------------------- | value-tag (value is 0x4a) | 1 byte ----------------------------------------------- | name-length (value is 0x0000) | 2 bytes ----------------------------------------------- | value-length (value is w) | 2 bytes ----------------------------------------------- | value (member-name) | w bytes ----------------------------------------------- | member-value-tag | 1 byte ----------------------------------------------- | name-length (value is 0x0000) | 2 bytes ----------------------------------------------- | member-value-length (value is x) | 2 bytes ----------------------------------------------- | member-value | x bytes -----------------------------------------------
Figure 7: Member Attribute Encoding
A "member-attribute" is encoded with eight subfields:
o The "value-tag" field specifies 0x4a for the attribute syntax 'memberAttrName'.
o The "name-length" field has the value of 0 in order to signify that it is a "member-attribute" contained in the collection.
o The "value-length" field specifies the length of the "value" field in bytes, e.g., w in the above diagram or 10 for the member attribute name 'media-type'. Additional member attribute values are specified using a value length of 0.
o The "value" field contains the name of the member attribute, e.g., the textual value 'media-type'.
o The "member-value-tag" field specifies the attribute syntax for the member attribute, e.g., 0x44 for the attribute syntax 'keyword'.
Sweet & McDonald Standards Track [Page 13]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
o The second "name-length" field has the value of 0 in order to signify that it is a "member-attribute" contained in the collection.
o The "member-value-length" field specifies the length of the member attribute value, e.g., x in the above diagram or 10 for the value 'stationery'.
o The "member-value" field contains the value of the attribute, e.g., the textual value 'stationery'.
3.1.8. Alternative Picture of the Encoding of a Request or a Response
From the standpoint of a parser that performs an action based on a "tag" value, the encoding consists of:
----------------------------------------------- | version-number | 2 bytes - required ----------------------------------------------- | operation-id (request) | | or | 2 bytes - required | status-code (response) | ----------------------------------------------- | request-id | 4 bytes - required ----------------------------------------------------------- | tag (delimiter-tag or value-tag) | 1 byte | ----------------------------------------------- |-0 or more | empty or rest of attribute | x bytes | ----------------------------------------------------------- | end-of-attributes-tag | 1 byte - required ----------------------------------------------- | data | y bytes - optional -----------------------------------------------
Figure 8: Encoding Based on Value Tags
The following shows what fields the parser would expect after each type of "tag":
o "begin-attribute-group-tag": expect zero or more "attribute" fields
o "value-tag": expect the remainder of an "attribute-with-one-value" or an "additional-value"
o "end-of-attributes-tag": expect that "attribute" fields are complete and there is optional "data"
Sweet & McDonald Standards Track [Page 14]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
operation-id = SIGNED-SHORT ; mapping from model status-code = SIGNED-SHORT ; mapping from model request-id = SIGNED-INTEGER ; whose value is > 0
attribute-group = begin-attribute-group-tag *attribute attribute = attribute-with-one-value *additional-value attribute-with-one-value = value-tag name-length name value-length value additional-value = value-tag zero-name-length value-length value
name-length = SIGNED-SHORT ; number of octets of 'name' name = LALPHA *( LALPHA / DIGIT / "-" / "_" / "." ) value-length = SIGNED-SHORT ; number of octets of 'value' value = OCTET-STRING data = OCTET-STRING
zero-name-length = %x00.00 ; name-length of 0 value-tag = %x10-ff ; see Section 3.5.2 begin-attribute-group-tag = %x00-02 / %x04-0f ; see Section 3.5.1 end-of-attributes-tag = %x03 ; tag of 3 ; see Section 3.5.1
SIGNED-BYTE = BYTE SIGNED-SHORT = 2BYTE SIGNED-INTEGER = 4BYTE DIGIT = %x30-39 ; "0" to "9" LALPHA = %x61-7A ; "a" to "z" BYTE = %x00-ff OCTET-STRING = *BYTE
Figure 9: ABNF of IPP Message Format
Sweet & McDonald Standards Track [Page 15]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Figure 10 defines additional terms that are referenced in this document and provides an alternate grouping of the delimiter tags.
delimiter-tag = begin-attribute-group-tag / ; see Section 3.5.1 end-of-attributes-tag begin-attribute-group-tag = %x00 / operation-attributes-tag / job-attributes-tag / printer-attributes-tag / unsupported-attributes-tag / future-group-tags operation-attributes-tag = %x01 ; tag of 1 job-attributes-tag = %x02 ; tag of 2 end-of-attributes-tag = %x03 ; tag of 3 printer-attributes-tag = %x04 ; tag of 4 unsupported-attributes-tag = %x05 ; tag of 5 future-group-tags = %x06-0f ; future extensions
Each "attribute-group" field MUST be encoded with the "begin- attribute-group-tag" field followed by zero or more "attribute" sub- fields.
Sweet & McDonald Standards Track [Page 16]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Table 1 maps the Model group name to value of the "begin-attribute- group-tag" field:
+----------------+--------------------------------------------------+ | Model Document | "begin-attribute-group-tag" field values | | Group | | +----------------+--------------------------------------------------+ | Operation | "operations-attributes-tag" | | Attributes | | +----------------+--------------------------------------------------+ | Job Template | "job-attributes-tag" | | Attributes | | +----------------+--------------------------------------------------+ | Job Object | "job-attributes-tag" | | Attributes | | +----------------+--------------------------------------------------+ | Unsupported | "unsupported-attributes-tag" | | Attributes | | +----------------+--------------------------------------------------+ | Requested | (Get-Job-Attributes) "job-attributes-tag" | | Attributes | | +----------------+--------------------------------------------------+ | Requested | (Get-Printer-Attributes)"printer-attributes-tag" | | Attributes | | +----------------+--------------------------------------------------+ | Document | in a special position at the end of the message | | Content | as described in Section 3.1.1. | +----------------+--------------------------------------------------+
Table 1: Group Values
For each operation request and response, the Model prescribes the required and optional attribute groups, along with their order. Within each attribute group, the Model prescribes the required and optional attributes, along with their order.
When the Model requires an attribute group in a request or response and the attribute group contains zero attributes, a request or response SHOULD encode the attribute group with the "begin-attribute- group-tag" field followed by zero "attribute" fields. For example, if the Client requests a single unsupported attribute with the Get- Printer-Attributes operation, the Printer MUST return no "attribute" fields, and it SHOULD return a "begin-attribute-group-tag" field for the Printer Attributes group. The Unsupported Attributes group is not such an example. According to the Model, the Unsupported Attributes group SHOULD be present only if the Unsupported Attributes group contains at least one attribute.
Sweet & McDonald Standards Track [Page 17]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
A receiver of a request MUST be able to process the following as equivalent empty attribute groups:
a. A "begin-attribute-group-tag" field with zero following "attribute" fields.
b. A missing, but expected, "begin-attribute-group-tag" field.
When the Model requires a sequence of an unknown number of attribute groups, each of the same type, the encoding MUST contain one "begin- attribute-group-tag" field for each attribute group, even when an "attribute-group" field contains zero "attribute" sub-fields. For example, the Get-Jobs operation may return zero attributes for some Jobs and not others. The "begin-attribute-group-tag" field followed by zero "attribute" fields tells the recipient that there is a Job in queue for which no information is available except that it is in the queue.
Some operation elements are called parameters in the Model. They MUST be encoded in a special position and they MUST NOT appear as operation attributes. These parameters are described in the subsections below.
The "version-number" field consists of a major and minor version- number, each of which is represented by a SIGNED-BYTE. The major version-number is the first byte of the encoding and the minor version-number is the second byte of the encoding. The protocol described in [RFC8011] has a major version-number of 1 (0x01) and a minor version-number of 1 (0x01). The ABNF for these two bytes is %x01.01.
Note: See Section 9 for more information on the "version-number" field and IPP version numbers.
The "operation-id" field contains an operation-id value as defined in the Model. The value is encoded as a SIGNED-SHORT and is located in the third and fourth bytes of the encoding of an operation request.
Sweet & McDonald Standards Track [Page 18]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
The "status-code" field contains a status-code value as defined in the Model. The value is encoded as a SIGNED-SHORT and is located in the third and fourth bytes of the encoding of an operation response.
If an IPP status-code is returned, then the HTTP status-code MUST be 200 (OK). With any other HTTP status-code value, the HTTP response MUST NOT contain an IPP message body, and thus no IPP status-code is returned.
The "request-id" field contains the request-id value as defined in the Model. The value is encoded as a SIGNED-INTEGER and is located in the fifth through eighth bytes of the encoding.
Table 2 specifies the values for the delimiter tags defined in this document. These tags are registered, along with tags defined in other documents, in the "Attribute Group Tags" registry.
RFC 8010 IPP/1.1: Encoding and Transport January 2017
When a "begin-attribute-group-tag" field occurs in the protocol, it means that zero or more following attributes up to the next group tag are attributes belonging to the attribute group specified by the value of the "begin-attribute-group-tag". For example, if the value of "begin-attribute-group-tag" is 0x01, the following attributes are members of the Operations Attributes group.
The "end-of-attributes-tag" (value 0x03) MUST occur exactly once in an operation and MUST be the last "delimiter-tag". If the operation has a document-data group, the Document data in that group follows the "end-of-attributes-tag".
The order and presence of "attribute-group" fields (whose beginning is marked by the "begin-attribute-group-tag" subfield) for each operation request and each operation response MUST be that defined in the Model.
A Printer MUST treat a "delimiter-tag" (values from 0x00 through 0x0f) differently from a "value-tag" (values from 0x10 through 0xff) so that the Printer knows there is an entire attribute group as opposed to a single value.
The remaining tables show values for the "value-tag" field, which is the first octet of an attribute. The "value-tag" field specifies the type of the value of the attribute.
Table 3 specifies the "out-of-band" values for the "value-tag" field defined in this document. These tags are registered, along with tags defined in other documents, in the "Out-of-Band Attribute Value Tags" registry.
+-----------------+-------------+ | Tag Value (Hex) | Meaning | +-----------------+-------------+ | 0x10 | unsupported | | 0x12 | unknown | | 0x13 | no-value | +-----------------+-------------+
Table 3: Out-of-Band Values
Sweet & McDonald Standards Track [Page 20]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Table 4 specifies the integer values defined in this document for the "value-tag" field; they are registered in the "Attribute Syntaxes" registry.
+----------------+--------------------------------------------------+ | Tag Value | Meaning | | (Hex) | | +----------------+--------------------------------------------------+ | 0x20 | Unassigned integer data type (see IANA IPP | | | registry) | | 0x21 | integer | | 0x22 | boolean | | 0x23 | enum | | 0x24-0x2f | Unassigned integer data types (see IANA IPP | | | registry) | +----------------+--------------------------------------------------+
Table 4: Integer Tags
Table 5 specifies the octetString values defined in this document for the "value-tag" field; they are registered in the "Attribute Syntaxes" registry.
+---------------+---------------------------------------------------+ | Tag Value | Meaning | | (Hex) | | +---------------+---------------------------------------------------+ | 0x30 | octetString with an unspecified format | | 0x31 | dateTime | | 0x32 | resolution | | 0x33 | rangeOfInteger | | 0x34 | begCollection | | 0x35 | textWithLanguage | | 0x36 | nameWithLanguage | | 0x37 | endCollection | | 0x38-0x3f | Unassigned octetString data types (see IANA IPP | | | registry) | +---------------+---------------------------------------------------+
Table 5: octetString Tags
Sweet & McDonald Standards Track [Page 21]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Table 6 specifies the character-string values defined in this document for the "value-tag" field; they are registered in the "Attribute Syntaxes" registry.
+---------------+---------------------------------------------------+ | Tag Value | Meaning | | (Hex) | | +---------------+---------------------------------------------------+ | 0x40 | Unassigned character-string data type (see IANA | | | IPP registry) | | 0x41 | textWithoutLanguage | | 0x42 | nameWithoutLanguage | | 0x43 | Unassigned character-string data type (see IANA | | | IPP registry) | | 0x44 | keyword | | 0x45 | uri | | 0x46 | uriScheme | | 0x47 | charset | | 0x48 | naturalLanguage | | 0x49 | mimeMediaType | | 0x4a | memberAttrName | | 0x4b-0x5f | Unassigned character-string data types (see IANA | | | IPP registry) | +---------------+---------------------------------------------------+
Table 6: String Tags
Note: An attribute value always has a type, which is explicitly specified by its tag; one such tag value is "nameWithoutLanguage". An attribute's name has an implicit type, which is keyword.
The values 0x60-0xff are reserved for future type definitions in Standards Track documents.
The tag 0x7f is reserved for extending types beyond the 255 values available with a single byte. A tag value of 0x7f MUST signify that the first four bytes of the value field are interpreted as the tag value. Note this future extension doesn't affect parsers that are unaware of this special tag. The tag is like any other unknown tag, and the value length specifies the length of a value, which contains a value that the parser treats atomically. Values from 0x00000000 to 0x3fffffff are reserved for definition in future Standards Track documents. The values 0x40000000 to 0x7fffffff are reserved for vendor extensions.
Sweet & McDonald Standards Track [Page 22]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
The "name-length" field consists of a SIGNED-SHORT and specifies the number of octets in the immediately following "name" field. The value of this field excludes the two bytes of the "name-length" field. For example, if the "name" field contains 'sides', the value of this field is 5.
If a "name-length" field has a value of zero, the following "name" field is empty and the following value is treated as an additional value for the attribute encoded in the nearest preceding "attribute- with-one-value" field. Within an attribute group, if two or more attributes have the same name, the attribute group is malformed (see [RFC8011]). The zero-length name is the only mechanism for multi- valued attributes.
The "value-length" field consists of a SIGNED-SHORT, which specifies the number of octets in the immediately following "value" field. The value of this field excludes the two bytes of the "value-length" field. For example, if the "value" field contains the keyword (string) value 'one-sided', the value of this field is 9.
For any of the types represented by binary signed integers, the sender MUST encode the value in exactly four octets.
For any of the types represented by binary signed bytes, e.g., the boolean type, the sender MUST encode the value in exactly one octet.
For any of the types represented by character strings, the sender MUST encode the value with all the characters of the string and without any padding characters.
For "out-of-band" values for the "value-tag" field defined in this document, such as 'unsupported', the "value-length" MUST be 0 and the "value" empty; the "value" has no meaning when the "value-tag" has one of these "out-of-band" values. For future "out-of-band" "value- tag" fields, the same rule holds unless the definition explicitly states that the "value-length" MAY be non-zero and the "value" non- empty
Sweet & McDonald Standards Track [Page 23]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
The syntax types (specified by the "value-tag" field) and most of the details of the representation of attribute values are defined in the Model. Table 7 augments the information in the Model and defines the syntax types from the Model in terms of the five basic types defined in Section 3. The five types are US-ASCII-STRING, LOCALIZED-STRING, SIGNED-INTEGER, SIGNED-SHORT, SIGNED-BYTE, and OCTET-STRING.
+----------------------+--------------------------------------------+ | Syntax of Attribute | Encoding | | Value | | +----------------------+--------------------------------------------+ | textWithoutLanguage, | LOCALIZED-STRING | | nameWithoutLanguage | | +----------------------+--------------------------------------------+ | textWithLanguage | OCTET-STRING consisting of four fields: a | | | SIGNED-SHORT, which is the number of | | | octets in the following field; a value of | | | type natural-language; a SIGNED-SHORT, | | | which is the number of octets in the | | | following field; and a value of type | | | textWithoutLanguage. The length of a | | | textWithLanguage value MUST be 4 + the | | | value of field a + the value of field c. | +----------------------+--------------------------------------------+ | nameWithLanguage | OCTET-STRING consisting of four fields: a | | | SIGNED-SHORT, which is the number of | | | octets in the following field; a value of | | | type natural-language; a SIGNED-SHORT, | | | which is the number of octets in the | | | following field; and a value of type | | | nameWithoutLanguage. The length of a | | | nameWithLanguage value MUST be 4 + the | | | value of field a + the value of field c. | +----------------------+--------------------------------------------+ | charset, | US-ASCII-STRING | | naturalLanguage, | | | mimeMediaType, | | | keyword, uri, and | | | uriScheme | | +----------------------+--------------------------------------------+ | boolean | SIGNED-BYTE where 0x00 is 'false' and 0x01 | | | is 'true' | +----------------------+--------------------------------------------+ | integer and enum | a SIGNED-INTEGER |
Sweet & McDonald Standards Track [Page 24]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
+----------------------+--------------------------------------------+ | dateTime | OCTET-STRING consisting of eleven octets | | | whose contents are defined by | | | "DateAndTime" in RFC 2579 [RFC2579] | +----------------------+--------------------------------------------+ | resolution | OCTET-STRING consisting of nine octets of | | | two SIGNED-INTEGERs followed by a SIGNED- | | | BYTE. The first SIGNED-INTEGER contains | | | the value of cross-feed direction | | | resolution. The second SIGNED-INTEGER | | | contains the value of feed direction | | | resolution. The SIGNED-BYTE contains the | | | units value. | +----------------------+--------------------------------------------+ | rangeOfInteger | Eight octets consisting of two SIGNED- | | | INTEGERs. The first SIGNED-INTEGER | | | contains the lower bound and the second | | | SIGNED-INTEGER contains the upper bound. | +----------------------+--------------------------------------------+ | 1setOf X | Encoding according to the rules for an | | | attribute with more than one value. Each | | | value X is encoded according to the rules | | | for encoding its type. | +----------------------+--------------------------------------------+ | octetString | OCTET-STRING | +----------------------+--------------------------------------------+ | collection | Encoding as defined in Section 3.1.6. | +----------------------+--------------------------------------------+
Table 7: Attribute Value Encoding
The attribute syntax type of the value determines its encoding and the value of its "value-tag".
HTTP/1.1 [RFC7230] is the REQUIRED transport layer for this protocol. HTTP/2 [RFC7540] is an OPTIONAL transport layer for this protocol.
The operation layer has been designed with the assumption that the transport layer contains the following information:
o the target URI for the operation; and
o the total length of the data in the operation layer, either as a single length or as a sequence of chunks each with a length.
Printer implementations MUST support HTTP over the IANA-assigned well-known port 631 (the IPP default port), although a Printer implementation can support HTTP over some other port as well.
Each HTTP operation MUST use the POST method where the request-target is the object target of the operation and where the "Content-Type" of the message body in each request and response MUST be "application/ ipp". The message body MUST contain the operation layer and MUST have the syntax described in Section 3.2, "Syntax of Encoding". A Client implementation MUST adhere to the rules for a Client described for HTTP [RFC7230]. A Printer (server) implementation MUST adhere to the rules for an origin server described for HTTP [RFC7230].
An IPP server sends a response for each request that it receives. If an IPP server detects an error, it MAY send a response before it has read the entire request. If the HTTP layer of the IPP server completes processing the HTTP headers successfully, it MAY send an intermediate response, such as "100 Continue", with no IPP data before sending the IPP response. A Client MUST expect such a variety of responses from an IPP server. For further information on HTTP, consult the HTTP documents [RFC7230].
An HTTP/1.1 server MUST support chunking for IPP requests, and an IPP Client MUST support chunking for IPP responses according to HTTP/1.1 [RFC7230].
All Printer and Job objects are identified by a Uniform Resource Identifier (URI) [RFC3986] so that they can be persistently and unambiguously referenced. Jobs can also be identified by a combination of Printer URI and Job ID.
Sweet & McDonald Standards Track [Page 26]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Some operation elements are encoded twice, once as the request-target on the HTTP request-line and a second time as a REQUIRED operation attribute in the application/ipp entity. These attributes are the target for the operation and are called "printer-uri" and "job-uri".
Note: The target URI is included twice in an operation referencing the same IPP object, but the two URIs can be different. For example, the HTTP request-target can be relative while the IPP request URI is absolute.
HTTP allows Clients to generate and send a relative URI rather than an absolute URI. A relative URI identifies a resource with the scope of the HTTP server but does not include scheme, host, or port. The following statements characterize how URIs are used in the mapping of IPP onto HTTP:
1. Although potentially redundant, a Client MUST supply the target of the operation both as an operation attribute and as a URI at the HTTP layer. The rationale for this decision is to maintain a consistent set of rules for mapping "application/ipp" to possibly many communication layers, even where URIs are not used as the addressing mechanism in the transport layer.
2. Even though these two URIs might not be literally identical (one being relative and the other being absolute), they MUST both reference the same IPP object.
3. The URI in the HTTP layer is either relative or absolute and is used by the HTTP server to route the HTTP request to the correct resource relative to that HTTP server.
4. Once the HTTP server resource begins to process the HTTP request, it can get the reference to the appropriate IPP Printer object from either the HTTP URI (using to the context of the HTTP server for relative URIs) or from the URI within the operation request; the choice is up to the implementation.
5. HTTP URIs can be relative or absolute, but the target URI in the IPP operation attribute MUST be an absolute URI.
Sweet & McDonald Standards Track [Page 27]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
5. IPP URI Schemes
The IPP URI schemes are 'ipp' [RFC3510] and 'ipps' [RFC7472]. Clients and Printers MUST support the ipp-URI value in the following IPP attributes:
o Job attributes:
* job-uri
* job-printer-uri
o Printer attributes:
* printer-uri-supported
o Operation attributes:
* job-uri
* printer-uri
Each of the above attributes identifies a Printer or Job. The ipp-URI and ipps-URI are intended as the value of the attributes in this list. All of these attributes have a syntax type of 'uri', but there are attributes with a syntax type of 'uri' that do not use the 'ipp' scheme, e.g., "job-more-info".
If a Printer registers its URI with a directory service, the Printer MUST register an ipp-URI or ipps-URI.
When a Client sends a request, it MUST convert a target ipp-URI to a target http-URL (or ipps-URI to a target https-URI) for the HTTP layer according to the following steps:
1. change the 'ipp' scheme to 'http' or 'ipps' scheme to 'https'; and
2. add an explicit port 631 if the ipp-URL or ipps-URL does not contain an explicit port. Note that port 631 is the IANA- assigned well-known port for the 'ipp' and 'ipps' schemes.
The Client MUST use the target http-URL or https-URL in both the HTTP request-line and HTTP headers, as specified by HTTP [RFC7230]. However, the Client MUST use the target ipp-URI or ipps-URI for the value of the "printer-uri" or "job-uri" operation attribute within the application/ipp body of the request. The server MUST use the
Sweet & McDonald Standards Track [Page 28]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
ipp-URI or ipps-URI for the value of the "printer-uri", "job-uri", or "printer-uri-supported" attributes within the application/ipp body of the response.
For example, when an IPP Client sends a request directly, i.e., no proxy, to an ipp-URI "ipp://printer.example.com/ipp/print/myqueue", it opens a TCP connection to port 631 (the IPP implicit port) on the host "printer.example.com" and sends the following data:
POST /ipp/print/myqueue HTTP/1.1 Host: printer.example.com:631 Content-type: application/ipp Transfer-Encoding: chunked ... "printer-uri" 'ipp://printer.example.com/ipp/print/myqueue' (encoded in application/ipp message body) ...
Figure 11: Direct IPP Request
As another example, when an IPP Client sends the same request as above via a proxy "myproxy.example.com", it opens a TCP connection to the proxy port 8080 on the proxy host "myproxy.example.com" and sends the following data:
POST http://printer.example.com:631/ipp/print/myqueue HTTP/1.1 Host: printer.example.com:631 Content-type: application/ipp Transfer-Encoding: chunked ... "printer-uri" 'ipp://printer.example.com/ipp/print/myqueue' (encoded in application/ipp message body) ...
Figure 12: Proxied IPP Request
The proxy then connects to the IPP origin server with headers that are the same as the "no-proxy" example above.
The IANA-PRINTER-MIB [RFC3805] has been updated to reference this document; the current version is available from <http://www.iana.org>.
See the IANA Considerations in the document "Internet Printing Protocol/1.1: Model and Semantics" [RFC8011] for information on IANA considerations for IPP extensions. IANA has updated the existing
Sweet & McDonald Standards Track [Page 29]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
'application/ipp' media type registration (whose contents are defined in Section 3 "Encoding of the Operation Layer") with the following information.
Type name: application
Subtype name: ipp
Required parameters: N/A
Optional parameters: N/A
Encoding considerations: IPP requests/responses MAY contain long lines and ALWAYS contain binary data (for example, attribute value lengths).
Security considerations: IPP requests/responses do not introduce any security risks not already inherent in the underlying transport protocols. Protocol mixed-version interworking rules in [RFC8011] as well as protocol-encoding rules in this document are complete and unambiguous. See also the security considerations in this document and [RFC8011].
Interoperability considerations: IPP requests (generated by Clients) and responses (generated by servers) MUST comply with all conformance requirements imposed by the normative specifications [RFC8011] and this document. Protocol-encoding rules specified in RFC 8010 are comprehensive so that interoperability between conforming implementations is guaranteed (although support for specific optional features is not ensured). Both the "charset" and "natural-language" of all IPP attribute values that are a LOCALIZED-STRING are explicit within IPP requests/responses (without recourse to any external information in HTTP, SMTP, or other message transport headers).
Published specifications: RFCs 8010 and 8011
Applications that use this media type: Internet Printing Protocol (IPP) print clients and print servers that communicate using HTTP/ HTTPS or other transport protocols. Messages of type "application/ ipp" are self-contained and transport independent, including "charset" and "natural-language" context for any LOCALIZED-STRING value.
Fragment identifier considerations: N/A
Sweet & McDonald Standards Track [Page 30]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Additional information:
Deprecated alias names for this type: N/A Magic number(s): N/A File extension(s): N/A Macintosh file type code(s): N/A
Person & email address to contact for further information:
ISTO PWG IPP Workgroup <ipp@pwg.org>
Intended usage: COMMON
Restrictions on usage: N/A
Author: ISTO PWG IPP Workgroup <ipp@pwg.org>
Change controller: ISTO PWG IPP Workgroup <ipp@pwg.org>
Provisional registration? (standards tree only): No
See the section on "Internationalization Considerations" in the document "Internet Printing Protocol/1.1: Model and Semantics" [RFC8011] for information on internationalization. This document adds no additional issues.
The IPP Model and Semantics document [RFC8011] discusses high-level security requirements (Client Authentication, Server Authentication, and Operation Privacy). Client Authentication is the mechanism by which the Client proves its identity to the server in a secure manner. Server Authentication is the mechanism by which the server proves its identity to the Client in a secure manner. Operation Privacy is defined as a mechanism for protecting operations from eavesdropping.
Message Integrity is addressed in the document "Internet Printing Protocol (IPP) over HTTPS Transport Binding and the 'ipps' URI Scheme" [RFC7472].
IPP Clients and Printers SHOULD support Digest Authentication [RFC7616]. Use of the Message Integrity feature (qop="auth-int") is OPTIONAL.
Note: Previous versions of this specification required support for the MD5 algorithms; however, [RFC7616] makes SHA2-256 mandatory to implement and deprecates MD5, only allowing its use for backwards compatibility reasons. IPP implementations that support Digest Authentication MUST support SHA2-256 and SHOULD support MD5 for backwards compatibility.
Note: The reason that IPP Clients and Printers SHOULD (rather than MUST) support Digest Authentication is that there is a certain class of Output Devices where it does not make sense. Specifically, a low- end device with limited ROM space and low paper throughput may not need Client Authentication. This class of device typically requires firmware designers to make trade-offs between protocols and functionality to arrive at the lowest-cost solution possible. Factored into the designer's decisions is not just the size of the code, but also the testing, maintenance, usefulness, and time-to- market impact for each feature delivered to the customer. Forcing such low-end devices to provide security in order to claim IPP/1.1 conformance would not make business sense. Print devices that have high-volume throughput and have available ROM space will typically provide support for Client Authentication that safeguards the device from unauthorized access because these devices are prone to a high loss of consumables and paper if unauthorized access occurs.
IPP Clients and Printers SHOULD support Transport Layer Security (TLS) [RFC5246] [RFC7525] for Server Authentication and Operation Privacy. IPP Printers MAY also support TLS for Client Authentication. IPP Clients and Printers MAY support Basic Authentication [RFC7617] for User Authentication if the channel is secure, e.g., IPP over HTTPS [RFC7472]. IPP Clients and Printers SHOULD NOT support Basic Authentication over insecure channels.
The IPP Model and Semantics document [RFC8011] defines two Printer attributes ("uri-authentication-supported" and "uri-security- supported") that the Client can use to discover the security policy of a Printer. That document also outlines IPP-specific security considerations and is the primary reference for security implications with regard to the IPP itself.
Sweet & McDonald Standards Track [Page 32]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Note: Because previous versions of this specification did not require TLS support, this version cannot require it for IPP/1.1. However, since printing often involves a great deal of sensitive or private information (medical reports, performance reviews, banking information, etc.) and network monitoring is pervasive ([RFC7258]), implementors are strongly encouraged to include TLS support.
Note: Because IPP Printers typically use self-signed X.509 certificates, IPP Clients SHOULD support Trust On First Use (defined in [RFC7435]) in addition to traditional X.509 certificate validation.
IPP uses the "Upgrading to TLS Within HTTP/1.1" mechanism [RFC2817] for 'ipp' URIs. The Client requests a secure TLS connection by using the HTTP "Upgrade" header while the server agrees in the HTTP response. The switch to TLS occurs either because the server grants the Client's request to upgrade to TLS or a server asks to switch to TLS in its response. Secure communication begins with a server's response to switch to TLS.
IPP uses the "HTTPS: HTTP over TLS" mechanism [RFC2818] for 'ipps' URIs. The Client and server negotiate a secure TLS connection immediately and unconditionally.
It is beyond the scope of this specification to mandate conformance with versions of IPP other than 1.1. IPP was deliberately designed, however, to make supporting other versions easy. IPP objects (Printers, Jobs, etc.) SHOULD:
o understand any valid request whose major "version-number" is greater than 0; and
o respond appropriately with a response containing the same "version-number" parameter value used by the Client in the request (if the Client-supplied "version-number" is supported) or the highest "version-number" supported by the Printer (if the Client- supplied "version-number" is not supported).
IPP Clients SHOULD:
o understand any valid response whose major "version-number" is greater than 0.
Sweet & McDonald Standards Track [Page 33]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
The following are rules regarding the "version-number" parameter (see Section 3.3):
1. Clients MUST send requests containing a "version-number" parameter with the highest supported value, e.g., '1.1', '2.0', etc., and SHOULD try supplying alternate version numbers if they receive a 'server-error-version-not-supported' error return in a response. For example, if a Client sends an IPP/2.0 request that is rejected with the 'server-error-version-not-supported' error and an IPP/1.1 "version-number", it SHOULD retry by sending an IPP/1.1 request.
2. IPP objects (Printers, Jobs, etc.) MUST accept requests containing a "version-number" parameter with a '1.1' value (or reject the request for reasons other than 'server-error-version- not-supported').
3. IPP objects SHOULD either accept requests whose major version is greater than 0 or reject such requests with the 'server-error- version-not-supported' status-code. See Section 4.1.8 of [RFC8011].
4. In any case, security MUST NOT be compromised when a Client supplies a lower "version-number" parameter in a request. For example, if an IPP/2.0 conforming Printer accepts version '1.1' requests and is configured to enforce Digest Authentication, it MUST do the same for a version '1.1' request.
The following are rules regarding security, the "version-number" parameter, and the URI scheme supplied in target attributes and responses:
1. When a Client supplies a request, the "printer-uri" or "job-uri" target operation attribute MUST have the same scheme as that indicated in one of the values of the "printer-uri-supported" Printer attribute.
2. When the Printer returns the "job-printer-uri" or "job-uri" Job Description attributes, it SHOULD return the same scheme ('ipp', 'ipps', etc.) that the Client supplied in the "printer-uri" or "job-uri" target operation attributes in the Get-Job-Attributes or Get-Jobs request, rather than the scheme used when the Job was created. However, when a Client requests Job attributes using the Get-Job-Attributes or Get-Jobs operations, the Jobs and Job
Sweet & McDonald Standards Track [Page 34]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
attributes that the Printer returns depends on: (1) the security in effect when the Job was created, (2) the security in effect in the query request, and (3) the security policy in force.
3. The Printer MUST enforce its security and privacy policies based on the owner of the IPP object and the URI scheme and/or credentials supplied by the Client in the current request.
[PWG5100.12] Sweet, M. and I. McDonald, "IPP Version 2.0, 2.1, and 2.2", October 2015, <http://ftp.pwg.org/pub/pwg/standards/ std-ipp20-20151030-5100.12.pdf>.
[PWG5100.3] Ocke, K. and T. Hastings, "Internet Printing Protocol (IPP): Production Printing Attributes - Set1", Candidate Standard 5100.3-2001, February 2001, <http://ftp.pwg.org/pub/pwg/candidates/ cs-ippprodprint10-20010212-5100.3.pdf>.
RFC 8010 IPP/1.1: Encoding and Transport January 2017
[RFC7525] Sheffer, Y., Holz, R., and P. Saint-Andre, "Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)", BCP 195, RFC 7525, DOI 10.17487/RFC7525, May 2015, <http://www.rfc-editor.org/info/rfc7525>.
Sweet & McDonald Standards Track [Page 39]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
The following is an example of a Print-Job request with "job-name", "copies", and "sides" specified. The "ipp-attribute-fidelity" attribute is set to 'true' so that the print request will fail if the "copies" or the "sides" attribute is not supported or their values are not supported.
Octets Symbolic Value Protocol field
0x0101 1.1 version-number 0x0002 Print-Job operation-id 0x00000001 1 request-id 0x01 start operation- operation- attributes attributes-tag 0x47 charset type value-tag 0x0012 name-length attributes-charset attributes-charset name 0x0005 value-length utf-8 UTF-8 value 0x48 natural-language value-tag type 0x001b name-length attributes-natural-language attributes-natural- name language 0x0005 value-length en-us en-US value 0x45 uri type value-tag 0x000b name-length printer-uri printer-uri name 0x002c value-length ipp://printer.example.com/ipp/ printer pinetree value print/pinetree 0x42 nameWithoutLanguage value-tag type 0x0008 name-length job-name job-name name 0x0006 value-length foobar foobar value 0x22 boolean type value-tag 0x0016 name-length ipp-attribute-fidelity ipp-attribute- name fidelity 0x0001 value-length 0x01 true value 0x02 start job-attributes job-attributes-
Sweet & McDonald Standards Track [Page 40]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
tag 0x21 integer type value-tag 0x0006 name-length copies copies name 0x0004 value-length 0x00000014 20 value 0x44 keyword type value-tag 0x0005 name-length sides sides name 0x0013 value-length two-sided-long-edge two-sided-long-edge value 0x03 end-of-attributes end-of- attributes-tag %!PDF... <PDF Document> data
Here is an example of a successful Print-Job response to the previous Print-Job request. The Printer supported the "copies" and "sides" attributes and their supplied values. The status-code returned is 'successful-ok'.
Octets Symbolic Value Protocol field
0x0101 1.1 version-number 0x0000 successful-ok status-code 0x00000001 1 request-id 0x01 start operation- operation- attributes attributes-tag 0x47 charset type value-tag 0x0012 name-length attributes-charset attributes-charset name 0x0005 value-length utf-8 UTF-8 value 0x48 natural-language value-tag type 0x001b name-length attributes-natural-language attributes- name natural-language 0x0005 value-length en-us en-US value 0x41 textWithoutLanguag value-tag e type 0x000e name-length status-message status-message name 0x000d value-length successful-ok successful-ok value 0x02 start job- job-attributes-
Sweet & McDonald Standards Track [Page 41]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
attributes tag 0x21 integer value-tag 0x0006 name-length job-id job-id name 0x0004 value-length 147 147 value 0x45 uri type value-tag 0x0007 name-length job-uri job-uri name 0x0030 value-length ipp://printer.example.com/ipp/pr job 147 on value int/pinetree/147 pinetree 0x23 enum type value-tag 0x0009 name-length job-state job-state name 0x0004 value-length 0x0003 pending value 0x03 end-of-attributes end-of- attributes-tag
Here is an example of an unsuccessful Print-Job response to the previous Print-Job request. It fails because, in this case, the Printer does not support the "sides" attribute and because the value '20' for the "copies" attribute is not supported. Therefore, no Job is created, and neither a "job-id" nor a "job-uri" operation attribute is returned. The error code returned is 'client-error- attributes-or-values-not-supported' (0x040b).
Octets Symbolic Value Protocol field
0x0101 1.1 version- number 0x040b client-error-attributes-or- status-code values-not-supported 0x00000001 1 request-id 0x01 start operation-attributes operation- attributes tag 0x47 charset type value-tag 0x0012 name-length attributes-charset attributes-charset name 0x0005 value-length utf-8 UTF-8 value 0x48 natural-language type value-tag 0x001b name-length
Sweet & McDonald Standards Track [Page 42]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
attributes-natural-language attributes-natural-language name 0x0005 value-length en-us en-US value 0x41 textWithoutLanguage type value-tag 0x000e name-length status-message status-message name 0x002f value-length client-error-attributes-or- client-error-attributes-or- value values-not-supported values-not-supported 0x05 start unsupported- unsupported- attributes attributes tag 0x21 integer type value-tag 0x0006 name-length copies copies name 0x0004 value-length 0x00000014 20 value 0x10 unsupported (type) value-tag 0x0005 name-length sides sides name 0x0000 value-length 0x03 end-of-attributes end-of- attributes- tag
A.4. Print-Job Response (Success with Attributes Ignored)
Here is an example of a successful Print-Job response to a Print-Job request like the previous Print-Job request, except that the value of "ipp-attribute-fidelity" is 'false'. The print request succeeds, even though, in this case, the Printer supports neither the "sides" attribute nor the value '20' for the "copies" attribute. Therefore, a Job is created and both a "job-id" and a "job-uri" operation attribute are returned. The unsupported attributes are also returned in an Unsupported Attributes group. The error code returned is 'successful-ok-ignored-or-substituted-attributes' (0x0001).
The following is an example of Print-URI request with "copies" and "job-name" parameters:
Octets Symbolic Value Protocol field
0x0101 1.1 version-number 0x0003 Print-URI operation-id 0x00000001 1 request-id 0x01 start operation- operation- attributes attributes-tag 0x47 charset type value-tag 0x0012 name-length attributes-charset attributes-charset name 0x0005 value-length utf-8 UTF-8 value 0x48 natural-language value-tag type 0x001b name-length attributes-natural-language attributes-natural- name language 0x0005 value-length en-us en-US value 0x45 uri type value-tag 0x000b name-length printer-uri printer-uri name 0x002c value-length ipp://printer.example.com/ipp/ printer pinetree value print/pinetree 0x45 uri type value-tag 0x000c name-length document-uri document-uri name 0x0019 value-length ftp://foo.example.com/fooftp://foo.example.co value m/foo 0x42 nameWithoutLanguage value-tag type 0x0008 name-length job-name job-name name 0x0006 value-length foobar foobar value 0x02 start job-attributes job-attributes- tag 0x21 integer type value-tag 0x0006 name-length copies copies name 0x0004 value-length
Sweet & McDonald Standards Track [Page 45]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
0x00000001 1 value 0x03 end-of-attributes end-of- attributes-tag
The following is an example of Create-Job request with no parameters and no attributes:
Octets Symbolic Value Protocol field
0x0101 1.1 version-number 0x0005 Create-Job operation-id 0x00000001 1 request-id 0x01 start operation- operation- attributes attributes-tag 0x47 charset type value-tag 0x0012 name-length attributes-charset attributes-charset name 0x0005 value-length utf-8 UTF-8 value 0x48 natural-language value-tag type 0x001b name-length attributes-natural-language attributes-natural- name language 0x0005 value-length en-us en-US value 0x45 uri type value-tag 0x000b name-length printer-uri printer-uri name 0x002c value-length ipp://printer.example.com/ipp/ printer pinetree value print/pinetree 0x03 end-of-attributes end-of- attributes-tag
A.7. Create-Job Request with Collection Attributes
The following is an example of Create-Job request with the "media- col" collection attribute [PWG5100.3] with the value "media- size={x-dimension=21000 y-dimension=29700} media-type='stationery'":
The following is an example of Get-Jobs request with parameters but no attributes:
Octets Symbolic Value Protocol field
0x0101 1.1 version-number 0x000a Get-Jobs operation-id 0x0000007b 123 request-id 0x01 start operation- operation- attributes attributes-tag 0x47 charset type value-tag 0x0012 name-length attributes-charset attributes-charset name 0x0005 value-length utf-8 UTF-8 value 0x48 natural-language value-tag type 0x001b name-length attributes-natural-language attributes-natural- name language 0x0005 value-length en-us en-US value
Sweet & McDonald Standards Track [Page 48]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
0x45 uri type value-tag 0x000b name-length printer-uri printer-uri name 0x002c value-length ipp://printer.example.com/ipp/ printer pinetree value print/pinetree 0x21 integer type value-tag 0x0005 name-length limit limit name 0x0004 value-length 0x00000032 50 value 0x44 keyword type value-tag 0x0014 name-length requested-attributes requested-attributes name 0x0006 value-length job-id job-id value 0x44 keyword type value-tag 0x0000 additional value name-length 0x0008 value-length job-name job-name value 0x44 keyword type value-tag 0x0000 additional value name-length 0x000f value-length document-format document-format value 0x03 end-of-attributes end-of- attributes-tag
The following is an example of a Get-Jobs response from a previous request with three Jobs. The Printer returns no information about the second Job (because of security reasons):
Octets Symbolic Value Protocol field
0x0101 1.1 version-number 0x0000 successful-ok status-code 0x0000007b 123 request-id (echoed back) 0x01 start operation- operation-attributes- attributes tag 0x47 charset type value-tag 0x0012 name-length attributes-charset attributes-charset name 0x0005 value-length utf-8 UTF-8 value 0x48 natural-language type value-tag 0x001b name-length
Sweet & McDonald Standards Track [Page 49]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
attributes-natural- attributes-natural- name language language 0x0005 value-length en-us en-US value 0x41 textWithoutLanguage value-tag type 0x000e name-length status-message status-message name 0x000d value-length successful-ok successful-ok value 0x02 start job-attributes job-attributes-tag (1st object) 0x21 integer type value-tag 0x0006 name-length job-id job-id name 0x0004 value-length 147 147 value 0x36 nameWithLanguage value-tag 0x0008 name-length job-name job-name name 0x000c value-length 0x0005 sub-value-length fr-ca fr-CA value 0x0003 sub-value-length fou fou name 0x02 start job-attributes job-attributes-tag (2nd object) 0x02 start job-attributes job-attributes-tag (3rd object) 0x21 integer type value-tag 0x0006 name-length job-id job-id name 0x0004 value-length 148 149 value 0x36 nameWithLanguage value-tag 0x0008 name-length job-name job-name name 0x0012 value-length 0x0005 sub-value-length de-CH de-CH value 0x0009 sub-value-length isch guet isch guet name 0x03 end-of-attributes end-of-attributes-tag
Sweet & McDonald Standards Track [Page 50]
RFC 8010 IPP/1.1: Encoding and Transport January 2017
Acknowledgements
The authors would like to acknowledge the following individuals for their contributions to the original IPP/1.1 specifications:
Sylvan Butler, Roger deBry, Tom Hastings, Robert Herriot (the original editor of RFC 2910), Paul Moore, Kirk Ocke, Randy Turner, John Wenn, and Peter Zehler.
Authors' Addresses
Michael Sweet Apple Inc. 1 Infinite Loop MS 111-HOMC Cupertino, CA 95014 United States of America
Email: msweet@apple.com
Ira McDonald High North, Inc. PO Box 221 Grand Marais, MI 49839 United States of America