Internet Engineering Task Force (IETF) X. Vilajosana, Ed. Request for Comments: 8180 Universitat Oberta de Catalunya BCP: 210 K. Pister Category: Best Current Practice University of California Berkeley ISSN: 2070-1721 T. Watteyne Analog Devices May 2017
Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e (6TiSCH) Configuration
Abstract
This document describes a minimal mode of operation for an IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH) network. This minimal mode of operation specifies the baseline set of protocols that need to be supported and the recommended configurations and modes of operation sufficient to enable a 6TiSCH functional network. 6TiSCH provides IPv6 connectivity over a Time-Slotted Channel Hopping (TSCH) mesh composed of IEEE Std 802.15.4 TSCH links. This minimal mode uses a collection of protocols with the respective configurations, including the IPv6 Low-Power Wireless Personal Area Network (6LoWPAN) framework, enabling interoperable IPv6 connectivity over IEEE Std 802.15.4 TSCH. This minimal configuration provides the necessary bandwidth for network and security bootstrapping and defines the proper link between the IETF protocols that interface to IEEE Std 802.15.4 TSCH. This minimal mode of operation should be implemented by all 6TiSCH-compliant devices.
Status of This Memo
This memo documents an Internet Best Current Practice.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc8180.
Vilajosana, et al. Best Current Practice [Page 1]
RFC 8180 6TiSCH Minimal May 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
A 6TiSCH network provides IPv6 connectivity [RFC2460] over a Time- Slotted Channel Hopping (TSCH) mesh [RFC7554] composed of IEEE Std 802.15.4 TSCH links [IEEE.802.15.4]. IPv6 connectivity is obtained by the use of the 6LoWPAN framework ([RFC4944], [RFC6282], [RFC8025],[RFC8138], and [RFC6775]), RPL [RFC6550], and the RPL Objective Function 0 (OF0) [RFC6552].
This specification defines operational parameters and procedures for a minimal mode of operation to build a 6TiSCH network. Any 6TiSCH- compliant device should implement this mode of operation. This operational parameter configuration provides the necessary bandwidth for nodes to bootstrap the network. The bootstrap process includes initial network configuration and security bootstrapping. In this specification, the 802.15.4 TSCH mode, the 6LoWPAN framework, RPL [RFC6550], and the RPL Objective Function 0 (OF0) [RFC6552] are used unmodified. Parameters and particular operations of TSCH are specified to guarantee interoperability between nodes in a 6TiSCH network.
In a 6TiSCH network, nodes follow a communication schedule as per 802.15.4 TSCH. Nodes learn the communication schedule upon joining the network. When following this specification, the learned schedule is the same for all nodes and does not change over time. Future specifications may define mechanisms for dynamically managing the communication schedule. Dynamic scheduling solutions are out of scope of this document.
IPv6 addressing and compression are achieved by the 6LoWPAN framework. The framework includes [RFC4944], [RFC6282], [RFC8025], the 6LoWPAN Routing Header dispatch [RFC8138] for addressing and header compression, and [RFC6775] for Duplicate Address Detection (DAD) and address resolution.
More advanced work is expected in the future to complement the minimal configuration with dynamic operations that can adapt the schedule to the needs of the traffic at run time.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
An implementation compliant with this specification MUST implement IEEE Std 802.15.4 [IEEE.802.15.4] in Time-Slotted Channel Hopping (TSCH) mode.
The remainder of this section details the RECOMMENDED TSCH settings, which are summarized in Figure 1. Any of the properties marked in the EB column are announced in the EBs the nodes send [IEEE.802.15.4] and learned by those joining the network. Changing their value means changing the contents of the EB.
In case of discrepancy between the values in this specification and IEEE Std 802.15.4 [IEEE.802.15.4], the IEEE standard has precedence.
Vilajosana, et al. Best Current Practice [Page 5]
RFC 8180 6TiSCH Minimal May 2017
+--------------------------------+------------------------------+---+ | Property | Recommended Setting |EB*| +--------------------------------+------------------------------+---+ | Slotframe Size | Tunable. Trades off | X | | | bandwidth against energy. | | +--------------------------------+------------------------------+---+ | Number of scheduled cells** | 1 | X | | (active) | Timeslot 0x0000 | | | | Channel Offset 0x0000 | | | | Link Options = (TX Link = 1, | | | | RX Link = 1, Shared Link = 1,| | | | Timekeeping = 1) | | +--------------------------------+------------------------------+---+ | Number of unscheduled cells | All remaining cells in the | X | | (off) | slotframe. | | +--------------------------------+------------------------------+---+ | Max Number MAC retransmissions | 3 (4 transmission attempts) | | +--------------------------------+------------------------------+---+ | Timeslot template | IEEE Std 802.15.4 default | X | | | (macTimeslotTemplateId=0) | | +--------------------------------+------------------------------+---+ | Enhanced Beacon Period | Tunable. Trades off join | | | (EB_PERIOD) | time against energy. | | +--------------------------------+------------------------------+---+ | Number used frequencies | IEEE Std 802.15.4 default | X | | (2.4 GHz O-QPSK PHY) | (16) | | +--------------------------------+------------------------------+---+ | Channel Hopping sequence | IEEE Std 802.15.4 default | X | | (2.4 GHz O-QPSK PHY) | (macHoppingSequenceID = 0) | | +--------------------------------+------------------------------+---+ * An "X" in this column means this property's value is announced in the EB; hence, a new node learns it when joining. ** This cell LinkType is set to ADVERTISING.
This minimal mode of operation uses a single slotframe. The TSCH slotframe is composed of a tunable number of timeslots. The slotframe size (i.e., the number of timeslots it contains) trades off bandwidth for energy consumption. The slotframe size needs to be tuned; the way of tuning it is out of scope of this specification. The slotframe size is announced in the EB. The RECOMMENDED value for the slotframe handle (macSlotframeHandle) is 0x00. An implementation MAY choose to use a different slotframe handle, for example, to add other slotframes with higher priority. The use of other slotframes is out of the scope of this document.
Vilajosana, et al. Best Current Practice [Page 6]
RFC 8180 6TiSCH Minimal May 2017
There is only a single scheduled cell in the slotframe. This cell MAY be scheduled at any slotOffset/channelOffset within the slotframe. The location of that cell in the schedule is announced in the EB. The LinkType of the scheduled cell is ADVERTISING to allow EBs to be sent on it.
Figure 2 shows an example of a slotframe of length 101 timeslots, resulting in a radio duty cycle below 0.99%.
Chan. +----------+----------+ +----------+ Off.0 | TxRxS/EB | OFF | | OFF | Chan. +----------+----------+ +----------+ Off.1 | OFF | OFF | ... | OFF | +----------+----------+ +----------+ . . . Chan. +----------+----------+ +----------+ Off.15 | OFF | OFF | | OFF | +----------+----------+ +----------+
slotOffset 0 1 100
EB: Enhanced Beacon Tx: Transmit Rx: Receive S: Shared OFF: Unscheduled by this specification
Figure 2: Example Slotframe of Length 101 Timeslots
A node MAY use the scheduled cell to transmit/receive all types of link-layer frames. EBs are sent to the link-layer broadcast address and are not acknowledged. Data frames are sent unicast and are acknowledged by the receiving neighbor.
All remaining cells in the slotframe are unscheduled. Dynamic scheduling solutions may be defined in the future that schedule those cells. One example is the 6top Protocol (6P) [PROTO-6P]. Dynamic scheduling solutions are out of scope of this document.
The default values of the TSCH timeslot template (defined in Section 8.4.2.2.3 of [IEEE.802.15.4]) and channel hopping sequence (defined in Section 6.2.10 of [IEEE.802.15.4]) SHOULD be used. A node MAY use different values by properly announcing them in its EB.
In the scheduled cell, a node transmits if there is a packet to transmit and listens otherwise (both "TX" and "RX" bits are set). When a node transmits, requesting a link-layer acknowledgment per [IEEE.802.15.4], and does not receive the requested acknowledgement, it uses a back-off mechanism to resolve possible collisions ("Shared" bit is set). A node joining the network maintains time synchronization to its initial time-source neighbor using that cell ("Timekeeping" bit is set).
Per Figure 1, the RECOMMENDED maximum number of link-layer retransmissions is 3. This means that, for packets requiring an acknowledgment, if none are received after a total of 4 attempts, the transmission is considered failed and the link layer MUST notify the upper layer. Packets not requiring an acknowledgment (including EBs) are not retransmitted.
[IEEE.802.15.4] defines the format of frames. Through a set of flags, [IEEE.802.15.4] allows for several fields to be present (or not), to have different lengths, and to have different values. This specification details the RECOMMENDED contents of 802.15.4 frames, while strictly complying with [IEEE.802.15.4].
The Frame Version field MUST be set to 0b10 (Frame Version 2). The Sequence Number field MAY be elided.
Vilajosana, et al. Best Current Practice [Page 8]
RFC 8180 6TiSCH Minimal May 2017
The EB Destination Address field MUST be set to 0xFFFF (short broadcast address). The EB Source Address field SHOULD be set as the node's short address if this is supported. Otherwise, the long address MUST be used.
The PAN ID Compression bit SHOULD indicate that the Source PAN ID is "Not Present" and the Destination PAN ID is "Present". The value of the PAN ID Compression bit is specified in Table 7-2 of the IEEE Std 802.15.4-2015 specification and depends on the type of the destination and source link-layer addresses (e.g., short, extended, not present).
Nodes follow the reception and rejection rules as per Section 6.7.2 of [IEEE.802.15.4].
The nonce is formatted according to [IEEE.802.15.4]. In the IEEE Std 802.15.4 specification [IEEE.802.15.4], nonce generation is described in Section 9.3.2.2, and byte ordering is described in Section 9.3.1, Annex B.2, and Annex B.2.2.
After booting, a TSCH node starts in an unsynchronized, unjoined state. Initial synchronization is achieved by listening for EBs. EBs from multiple networks may be heard. Many mechanisms exist for discrimination between networks, the details of which are out of scope.
The IEEE Std 802.15.4 specification does not define how often EBs are sent, nor their contents [IEEE.802.15.4]. In a minimal TSCH configuration, a node SHOULD send an EB every EB_PERIOD. Tuning EB_PERIOD allows a trade-off between joining time and energy consumption.
EBs should be used to obtain information about local networks and to synchronize ASN and time offset of the specific network that the node decides to join. Once joined to a particular network, a node MAY choose to continue to listen for EBs, to gather more information about other networks, for example. During the joining process, before secure connections to time parents have been created, a node MAY maintain synchronization using EBs. [RFC7554] discusses different time synchronization approaches.
The IEEE Std 802.15.4 specification requires EBs to be sent in order to enable nodes to join the network. The EBs SHOULD carry the Information Elements (IEs) listed below [IEEE.802.15.4].
Vilajosana, et al. Best Current Practice [Page 9]
RFC 8180 6TiSCH Minimal May 2017
TSCH Synchronization IE: Contains synchronization information such as ASN and Join Metric. The value of the Join Metric field is discussed in Section 6.1.
TSCH Timeslot IE: Contains the timeslot template identifier. This template is used to specify the internal timing of the timeslot. This specification RECOMMENDS the default timeslot template.
Channel Hopping IE: Contains the channel hopping sequence identifier. This specification RECOMMENDS the default channel hopping sequence.
TSCH Slotframe and Link IE: Enables joining nodes to learn the initial schedule to be used as they join the network. This document RECOMMENDS the use of a single cell.
If a node strictly follows the recommended setting from Figure 1, the EB it sends has the exact same contents as an EB it received when joining, except for the Join Metric field in the TSCH Synchronization IE.
When a node has already joined a network (i.e., it has received an EB) synchronized to the EB sender and configured its schedule following this specification, the node SHOULD ignore subsequent EBs that try to change the configured parameters. This does not preclude listening to EBs from other networks.
When securing link-layer frames, link-layer frames MUST be secured by the link-layer security mechanisms defined in IEEE Std 802.15.4 [IEEE.802.15.4]. Link-layer authentication MUST be applied to the entire frame, including the 802.15.4 header. Link-layer encryption MAY be applied to 802.15.4 Payload IEs and the 802.15.4 payload.
This specification assumes the existence of two cryptographic keys:
Key K1 is used to authenticate EBs. EBs MUST be authenticated only (no encryption); their contents are defined in Section 4.5.2.
Key K2 is used to authenticate and encrypt DATA and ACKNOWLEDGMENT frames.
Vilajosana, et al. Best Current Practice [Page 10]
RFC 8180 6TiSCH Minimal May 2017
These keys can be pre-configured or learned during a key distribution phase. Key distribution mechanisms are defined, for example, in [SEC-6TISCH] and [SEC-JOIN-6TISCH]. Key distribution is out of scope of this document.
The behavior of a Joining Node (JN) is different depending on which key(s) are pre-configured:
If both keys K1 and K2 are pre-configured, the JN does not rely on a key distribution phase to learn K1 or K2.
If key K1 is pre-configured but not key K2, the JN authenticates EBs using K1 and relies on the key distribution phase to learn K2.
If neither key K1 nor key K2 is pre-configured, the JN accepts EBs as defined in Section 6.3.1.2 of IEEE Std 802.15.4 [IEEE.802.15.4], i.e., they are passed forward even "if the status of the unsecuring process indicated an error". The JN then runs the key distribution phase to learn K1 and K2. During that process, the node that JN is talking to uses the secExempt mechanism (see Section 9.2.4 of [IEEE.802.15.4]) to process frames from JN. Once the key distribution phase is done, the node that has installed secExempts for the JN MUST clear the installed exception rules.
In the event of a network reset, the new network MUST either use new cryptographic keys or ensure that the ASN remains monotonically increasing.
The step_of_rank (Sp) uses the Expected Transmission Count (ETX) [RFC6551].
An implementation MUST follow OF0's normalization guidance as discussed in Sections 1 and 4.1 of [RFC6552]. Sp SHOULD be calculated as (3*ETX)-2. The minimum value of Sp (MINIMUM_STEP_OF_RANK) indicates a good quality link. The maximum value of Sp (MAXIMUM_STEP_OF_RANK) indicates a poor quality link. The default value of Sp (DEFAULT_STEP_OF_RANK) indicates an average quality link. Candidate parents with ETX greater than 3 SHOULD NOT be selected. This avoids having ETX values on used links that are larger that the maximum allowed transmission attempts.
Vilajosana, et al. Best Current Practice [Page 12]
When RPL is used, nodes MUST implement the non-storing mode of operation (see Section 9.7 of [RFC6550]). The storing mode of operation (see Section 9.8 of [RFC6550]) SHOULD be implemented by nodes with enough capabilities. Nodes not implementing RPL MUST join as leaf nodes.
RPL signaling messages such as DODAG Information Objects (DIOs) are sent using the Trickle algorithm (see Section 8.3.1 of [RFC6550] and Section 4.2 of [RFC6206]). For this specification, the Trickle timer MUST be used with the RPL-defined default values (see Section 8.3.1 of [RFC6550]).
RPL information and hop-by-hop extension headers MUST follow [RFC6553] and [RFC6554]. For cases in which the packets formed at the Low-Power and Lossy Network (LLN) need to cross through intermediate routers, these MUST follow the IP-in-IP encapsulation requirement specified by [RFC6282] and [RFC2460]. Routing extension headers such as RPL Packet Information (RPI) [RFC6550] and Source Routing Header (SRH) [RFC6554], and outer IP headers in case of encapsulation, MUST be compressed according to [RFC8138] and [RFC8025].
The Join Metric of the TSCH Synchronization IE in the EB MUST be calculated based on the routing metric of the node, normalized to a value between 0 and 255. A lower value of the Join Metric indicates the node sending the EB is topologically "closer" to the root of the network. A lower value of the Join Metric hence indicates higher preference for a joining node to synchronize to that neighbor.
In case the network uses RPL, the Join Metric of any node (including the Directed Acyclic Graph (DAG) root) MUST be set to DAGRank(rank)-1. According to Section 5.1.1, DAGRank(rank(0)) = 1. DAGRank(rank(0))-1 = 0 is compliant with 802.15.4's requirement of having the root use Join Metric = 0.
In case the network does not use RPL, the Join Metric value MUST follow the rules specified by [IEEE.802.15.4].
Vilajosana, et al. Best Current Practice [Page 14]
When a node joins a network, it may hear EBs sent by different nodes already in the network. The decision of which neighbor to synchronize to (e.g., which neighbor becomes the node's initial time- source neighbor) is implementation specific. For example, after having received the first EB, a node MAY listen for at most MAX_EB_DELAY seconds until it has received EBs from NUM_NEIGHBOURS_TO_WAIT distinct neighbors. Recommended values for MAX_EB_DELAY and NUM_NEIGHBOURS_TO_WAIT are defined in Figure 5. When receiving EBs from distinct neighbors, the node MAY use the Join Metric field in each EB to select the initial time-source neighbor, as described in Section 6.3.6 of IEEE Std 802.15.4 [IEEE.802.15.4].
At any time, a node MUST maintain synchronization to at least one time-source neighbor. A node's time-source neighbor MUST be chosen among the neighbors in its RPL routing parent set when RPL is used. In the case a node cannot maintain connectivity to at least one time- source neighbor, the node looses synchronization and needs to join the network again.
When a RPL node joins the network, it MUST NOT send EBs before having acquired a RPL Rank to avoid inconsistencies in the time synchronization structure. This applies to other routing protocols with their corresponding routing metrics. As soon as a node acquires routing information (e.g., a RPL Rank, see Section 5.1.1), it SHOULD start sending EBs.
Per [RFC6552] and [RFC6719], the specification RECOMMENDS the use of a boundary value (PARENT_SWITCH_THRESHOLD) to avoid constant changes of the parent when ranks are compared. When evaluating a parent that belongs to a smaller path cost than the current minimum path, the candidate node is selected as the new parent only if the difference between the new path and the current path is greater than the defined PARENT_SWITCH_THRESHOLD. Otherwise, the node MAY continue to use the current preferred parent. Per [RFC6719], the PARENT_SWITCH_THRESHOLD SHOULD be set to 192 when the ETX metric is used (in the form 128*ETX); the recommendation for this document is to use PARENT_SWITCH_THRESHOLD equal to 640 if the metric being used is ((3*ETX)-2)*minHopRankIncrease or a proportional value. This deals with hysteresis both for routing parent and time-source neighbor selection.
Vilajosana, et al. Best Current Practice [Page 15]
The exact format of the neighbor table is implementation specific. The RECOMMENDED per-neighbor information is (taken from the [openwsn] implementation):
identifier: Identifier(s) of the neighbor (e.g., EUI-64).
numTx: Number of link-layer transmission attempts to that neighbor.
numTxAck: Number of transmitted link-layer frames that have been link-layer acknowledged by that neighbor.
numRx: Number of link-layer frames received from that neighbor.
timestamp: When the last frame was received from that neighbor. This can be based on the ASN counter or any other time base. It can be used to trigger a keep-alive message.
routing metric: The RPL Rank of that neighbor, for example.
time-source neighbor: A flag indicating whether this neighbor is a time-source neighbor.
The IEEE Std 802.15.4 specification [IEEE.802.15.4] does not define the use of queues to handle upper-layer data (either application or control data from upper layers). The following rules are RECOMMENDED:
A node is configured to keep in the queues a configurable number of upper-layer packets per link (default NUM_UPPERLAYER_PACKETS) for a configurable time that should cover the join process (default MAX_JOIN_TIME).
Frames generated by the 802.15.4 layer (including EBs) are queued with a priority higher than frames coming from higher layers.
A frame type BEACON is queued with higher priority than frame types DATA.
Vilajosana, et al. Best Current Practice [Page 16]
This document is concerned only with link-layer security.
By their nature, many Internet of Things (IoT) networks have nodes in physically vulnerable locations. We should assume that nodes will be physically compromised, their memories examined, and their keys extracted. Fixed secrets will not remain secret. This impacts the node-joining process. Provisioning a network with a fixed link key K2 is not secure. For most applications, this implies that there will be a joining phase during which some level of authorization will be allowed for nodes that have not been authenticated. Details are out of scope, but the link layer must provide some flexibility here.
If an attacker has obtained K1, it can generate fake EBs to attack a whole network by sending authenticated EBs. The attacker can cause the joining node to initiate the joining process to the attacker. In the case that the joining process includes authentication and distribution of a K2, then the joining process will fail and the JN will notice the attack. If K2 is also compromised, the JN will not notice the attack and the network will be compromised.
Even if an attacker does not know the value of K1 and K2 (Section 4.6), it can still generate fake EB frames authenticated with an arbitrary key. Here we discuss the impact these fake EBs can have, depending on what key(s) are pre-provisioned.
Vilajosana, et al. Best Current Practice [Page 17]
RFC 8180 6TiSCH Minimal May 2017
If both K1 and K2 are pre-provisioned; a joining node can distinguish legitimate from fake EBs and join the legitimate network. The fake EBs have no impact.
The same holds if K1 is pre-provisioned but not K2.
If neither K1 nor K2 is pre-provisioned, a joining node may mistake a fake EB for a legitimate one and initiate a joining process to the attacker. That joining process will fail, as the joining node will not be able to authenticate the attacker during the security handshake. This will force the joining node to start over listening for an EB. So while the joining node never joins the attacker, this costs the joining node time and energy and is a vector of attack.
Choosing what key(s) to pre-provision needs to balance the different discussions above.
Once the joining process is over, the node that has joined can authenticate EBs (it knows K1). This means it can process their contents and use EBs for synchronization.
ASN provides a nonce for security operations in a slot. Any re-use of ASN with a given key exposes information about encrypted packet contents and risks replay attacks. Replay attacks are prevented because, when the network resets, either the new network uses new cryptographic key(s) or ensures that the ASN increases monotonically (Section 4.6).
Maintaining accurate time synchronization is critical for network operation. Accepting timing information from unsecured sources MUST be avoided during normal network operation, as described in Section 4.5.2. During joining, a node may be susceptible to timing attacks before key K1 and K2 are learned. During network operation, a node MAY maintain statistics on time updates from neighbors and monitor for anomalies.
Denial-of-Service (DoS) attacks at the Media Access Control (MAC) layer in an LLN are easy to achieve simply by Radio Frequency (RF) jamming. This is the base case against which more sophisticated DoS attacks should be judged. For example, sending fake EBs announcing a very low Join Metric may cause a node to waste time and energy trying to join a fake network even when legitimate EBs are being heard. Proper join security will prevent the node from joining the false flag, but by then the time and energy will have been wasted. However, the energy cost to the attacker would be lower and the
Vilajosana, et al. Best Current Practice [Page 18]
RFC 8180 6TiSCH Minimal May 2017
energy cost to the joining node would be higher if the attacker simply sent loud short packets in the middle of any valid EB that it hears.
ACK reception probability is less than 100% due to changing channel conditions and unintentional or intentional jamming. This will cause the sending node to retransmit the same packet until it is acknowledged or a retransmission limit is reached. Upper-layer protocols should take this into account, possibly using a sequence number to match retransmissions.
The 6TiSCH layer SHOULD keep track of anomalous events and report them to a higher authority. For example, EBs reporting low Join Metrics for networks that cannot be joined, as described above, may be a sign of attack. Additionally, in normal network operation, message integrity check failures on packets with a valid Cyclic Redundancy Check (CRC) will occur at a rate on the order of once per million packets. Any significant deviation from this rate may be a sign of a network attack. Along the same lines, time updates in ACKs or EBs that are inconsistent with the MAC-layer's sense of time and its own plausible time-error drift rate may also be a result of network attack.
[RFC6550] Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, JP., and R. Alexander, "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks", RFC 6550, DOI 10.17487/RFC6550, March 2012, <http://www.rfc-editor.org/info/rfc6550>.
[RFC6551] Vasseur, JP., Ed., Kim, M., Ed., Pister, K., Dejean, N., and D. Barthel, "Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks", RFC 6551, DOI 10.17487/RFC6551, March 2012, <http://www.rfc-editor.org/info/rfc6551>.
[RFC6553] Hui, J. and JP. Vasseur, "The Routing Protocol for Low- Power and Lossy Networks (RPL) Option for Carrying RPL Information in Data-Plane Datagrams", RFC 6553, DOI 10.17487/RFC6553, March 2012, <http://www.rfc-editor.org/info/rfc6553>.
[RFC6554] Hui, J., Vasseur, JP., Culler, D., and V. Manral, "An IPv6 Routing Header for Source Routes with the Routing Protocol for Low-Power and Lossy Networks (RPL)", RFC 6554, DOI 10.17487/RFC6554, March 2012, <http://www.rfc-editor.org/info/rfc6554>.
Vilajosana, et al. Best Current Practice [Page 20]
RFC 8180 6TiSCH Minimal May 2017
[RFC6775] Shelby, Z., Ed., Chakrabarti, S., Nordmark, E., and C. Bormann, "Neighbor Discovery Optimization for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs)", RFC 6775, DOI 10.17487/RFC6775, November 2012, <http://www.rfc-editor.org/info/rfc6775>.
[openwsn] Watteyne, T., Vilajosana, X., Kerkez, B., Chraim, F., Weekly, K., Wang, Q., Glaser, S., and K. Pister, "OpenWSN: a standards-based low-power wireless development environment", Transactions on Emerging Telecommunications Technologies, Volume 23 Issue 5, pages 480-493, DOI 10.1002/ett.2558, August 2012.
[PROTO-6P] Wang, Q., Vilajosana, X., and T. Watteyne, "6top Protocol (6P)", Work in Progress, draft-ietf-6tisch-6top-protocol- 05, May 2017.
[RFC7554] Watteyne, T., Ed., Palattella, M., and L. Grieco, "Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things (IoT): Problem Statement", RFC 7554, DOI 10.17487/RFC7554, May 2015, <http://www.rfc-editor.org/info/rfc7554>.
[SEC-6TISCH] Vucinic, M., Simon, J., Pister, K., and M. Richardson, "Minimal Security Framework for 6TiSCH", Work in Progress, draft-ietf-6tisch-minimal-security-02, March 2017.
Vilajosana, et al. Best Current Practice [Page 21]
RFC 8180 6TiSCH Minimal May 2017
[SEC-JOIN-6TISCH] Richardson, M., "6tisch Secure Join protocol", Work in Progress, draft-ietf-6tisch-dtsecurity-secure-join-01, February 2017.
[TERMS-6TiSCH] Palattella, M., Thubert, P., Watteyne, T., and Q. Wang, "Terminology in IPv6 over the TSCH mode of IEEE 802.15.4e", Work in Progress, draft-ietf-6tisch- terminology-08, December 2016.
Vilajosana, et al. Best Current Practice [Page 22]
This section contains several example packets. Each example contains (1) a schematic header diagram, (2) the corresponding bytestream, and (3) a description of each of the IEs that form the packet. Packet formats are specific for the [IEEE.802.15.4] revision and may vary in future releases of the IEEE standard. In case of differences between the packet content presented in this section and [IEEE.802.15.4], the latter has precedence.
The MAC header fields are described in a specific order. All field formats in this example are depicted in the order in which they are transmitted, from left to right, where the leftmost bit is transmitted first. Bits within each field are numbered from 0 (leftmost and least significant) to k - 1 (rightmost and most significant), where the length of the field is k bits. Fields that are longer than a single octet are sent to the PHY in the order from the octet containing the lowest numbered bits to the octet containing the highest numbered bits (little endian).
Vilajosana, et al. Best Current Practice [Page 23]
RFC 8180 6TiSCH Minimal May 2017
Description of the IEs:
#Header IE Header Len1 = Header IE Length (0) Element ID = 0x7e - termination IE indicating Payload IE coming next Type 0
#Payload IE Header (MLME) Len2 = Payload IE Len (26 bytes) Group ID = 1 MLME (Nested) Type = 1
#MLME-SubIE TSCH Synchronization Len3 = Length in bytes of the sub-IE payload (6 bytes) Sub-ID = 0x1a (MLME-SubIE TSCH Synchronization) Type = Short (0) ASN = Absolute Sequence Number (5 bytes) Join Metric = 1 byte
#MLME-SubIE TSCH Timeslot Len4 = Length in bytes of the sub-IE payload (1 byte) Sub-ID = 0x1c (MLME-SubIE Timeslot) Type = Short (0) Timeslot template ID = 0x00 (default)
#MLME-SubIE Channel Hopping Len5 = Length in bytes of the sub-IE payload (1 byte) Sub-ID = 0x09 (MLME-SubIE Channel Hopping) Type = Long (1) Hopping Sequence ID = 0x00 (default)
#MLME-SubIE TSCH Slotframe and Link Len6 = Length in bytes of the sub-IE payload (10 bytes) Sub-ID = 0x1b (MLME-SubIE TSCH Slotframe and Link) Type = Short (0) Number of slotframes = 0x01 Slotframe handle = 0x00 Slotframe size = 101 slots (0x65) Number of Links (Cells) = 0x01 Timeslot = 0x0000 (2B) Channel Offset = 0x0000 (2B) Link Options = 0x0F (TX Link = 1, RX Link = 1, Shared Link = 1, Timekeeping = 1 )
Vilajosana, et al. Best Current Practice [Page 24]
#Header IE Header Len1 = Header IE Length (none) Element ID = 0x7e - termination IE indicating Payload IE coming next Type 0
Vilajosana, et al. Best Current Practice [Page 25]
RFC 8180 6TiSCH Minimal May 2017
#Payload IE Header (MLME) Len2 = Payload IE Len (53 bytes) Group ID = 1 MLME (Nested) Type = 1
#MLME-SubIE TSCH Synchronization Len3 = Length in bytes of the sub-IE payload (6 bytes) Sub-ID = 0x1a (MLME-SubIE TSCH Synchronization) Type = Short (0) ASN = Absolute Sequence Number (5 bytes) Join Metric = 1 byte
#MLME-SubIE TSCH Timeslot Len4 = Length in bytes of the sub-IE payload (25 bytes) Sub-ID = 0x1c (MLME-SubIE Timeslot) Type = Short (0) Timeslot template ID = 0x01 (non-default)
Vilajosana, et al. Best Current Practice [Page 26]
RFC 8180 6TiSCH Minimal May 2017
#MLME-SubIE Channel Hopping Len5 = Length in bytes of the sub-IE payload. (1 byte) Sub-ID = 0x09 (MLME-SubIE Channel Hopping) Type = Long (1) Hopping Sequence ID = 0x00 (default)
#Key Identifier (1 byte) Key Index = IDX (deployment-specific KeyIndex parameter that identifies the cryptographic key)
Acknowledgments
The authors acknowledge the guidance and input from Rene Struik, Pat Kinney, Michael Richardson, Tero Kivinen, Nicola Accettura, Malisa Vucinic, and Jonathan Simon. Thanks to Charles Perkins, Brian E. Carpenter, Ralph Droms, Warren Kumari, Mirja Kuehlewind, Ben Campbell, Benoit Claise, and Suresh Krishnan for the exhaustive and detailed reviews. Thanks to Simon Duquennoy, Guillaume Gaillard, Tengfei Chang, and Jonathan Munoz for the detailed review of the examples section. Thanks to 6TiSCH co-chair Pascal Thubert for his guidance and advice.
Authors' Addresses
Xavier Vilajosana (editor) Universitat Oberta de Catalunya 156 Rambla Poblenou Barcelona, Catalonia 08018 Spain
Email: xvilajosana@uoc.edu
Kris Pister University of California Berkeley 512 Cory Hall Berkeley, California 94720 United States of America
Email: pister@eecs.berkeley.edu
Thomas Watteyne Analog Devices 32990 Alvarado-Niles Road, Suite 910 Union City, CA 94587 United States of America
Email: twatteyne@linear.com
Vilajosana, et al. Best Current Practice [Page 28]