Internet Engineering Task Force (IETF) L. Ginsberg, Ed. Request for Comments: 8571 Cisco Systems, Inc. Category: Standards Track S. Previdi ISSN: 2070-1721 Q. Wu Huawei J. Tantsura Apstra, Inc. C. Filsfils Cisco Systems, Inc. March 2019
BGP - Link State (BGP-LS) Advertisement of IGP Traffic Engineering Performance Metric Extensions
Abstract
This document defines new BGP - Link State (BGP-LS) TLVs in order to carry the IGP Traffic Engineering Metric Extensions defined in the IS-IS and OSPF protocols.
Status of This Memo
This is an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at https://www.rfc-editor.org/info/rfc8571.
Ginsberg, et al. Standards Track [Page 1]
RFC 8571 BGP-LS Advertisement of IGP TE Metric Extensions March 2019
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Table of Contents
1. Introduction ....................................................2 2. Link Attribute TLVs for TE Metric Extensions ....................3 2.1. Unidirectional Link Delay TLV ..............................3 2.2. Min/Max Unidirectional Link Delay TLV ......................4 2.3. Unidirectional Delay Variation TLV .........................4 2.4. Unidirectional Link Loss TLV ...............................5 2.5. Unidirectional Residual Bandwidth TLV ......................5 2.6. Unidirectional Available Bandwidth TLV .....................6 2.7. Unidirectional Utilized Bandwidth TLV ......................6 2.8. Mappings to IGP Source Sub-TLVs ............................7 3. Security Considerations .........................................7 4. IANA Considerations .............................................8 5. References ......................................................8 5.1. Normative References .......................................8 5.2. Informative References .....................................9 Acknowledgements ...................................................9 Contributors .......................................................9 Authors' Addresses ................................................10
BGP - Link State (BGP-LS) [RFC7752] defines Network Layer Reachability Information (NLRI) and attributes in order to carry link-state information. New BGP-LS Link Attribute TLVs are required in order to carry the Traffic Engineering Metric Extensions defined in [RFC8570] and [RFC7471].
Ginsberg, et al. Standards Track [Page 2]
RFC 8571 BGP-LS Advertisement of IGP TE Metric Extensions March 2019
This TLV advertises the average link delay between two directly connected IGP link-state neighbors. The semantics and values of the fields in the TLV are described in [RFC8570] and [RFC7471].
This TLV advertises the minimum and maximum delay values between two directly connected IGP link-state neighbors. The semantics and values of the fields in the TLV are described in [RFC8570] and [RFC7471].
This TLV advertises the average link delay variation between two directly connected IGP link-state neighbors. The semantics and values of the fields in the TLV are described in [RFC8570] and [RFC7471].
This TLV advertises the loss (as a packet percentage) between two directly connected IGP link-state neighbors. The semantics and values of the fields in the TLV are described in [RFC8570] and [RFC7471].
This TLV advertises the residual bandwidth between two directly connected IGP link-state neighbors. The semantics and values of the fields in the TLV are described in [RFC8570] and [RFC7471].
This TLV advertises the available bandwidth between two directly connected IGP link-state neighbors. The semantics and values of the fields in the TLV are described in [RFC8570] and [RFC7471].
This TLV advertises the bandwidth utilization between two directly connected IGP link-state neighbors. The semantics and values of the fields in the TLV are described in [RFC8570] and [RFC7471].
Procedures and protocol extensions defined in this document do not affect the BGP security model. See the "Security Considerations" section of [RFC4271] for a discussion of BGP security. Also, refer to [RFC4272] and [RFC6952] for analyses of security issues for BGP. Security considerations for acquiring and distributing BGP-LS information are discussed in [RFC7752].
The TLVs introduced in this document are used to propagate the Traffic Engineering Metric Extensions defined in [RFC8570] and [RFC7471]. These TLVs represent the state and resource availability of the IGP link. It is assumed that the IGP instances originating these TLVs will support all the required security and authentication mechanisms (as described in [RFC8570] and [RFC7471]) in order to prevent any security issues when propagating the TLVs into BGP-LS.
Ginsberg, et al. Standards Track [Page 7]
RFC 8571 BGP-LS Advertisement of IGP TE Metric Extensions March 2019
The advertisement of the link attribute information defined in this document presents no additional risk beyond that associated with the existing link attribute information already supported in [RFC7752].
IANA has made assignments in the "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" registry for the new Link Attribute TLVs as listed below:
TLV Code Point Description -------------------------------------------------------- 1114 Unidirectional Link Delay
[RFC7752] Gredler, H., Ed., Medved, J., Previdi, S., Farrel, A., and S. Ray, "North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP", RFC 7752, DOI 10.17487/RFC7752, March 2016, <https://www.rfc-editor.org/info/rfc7752>.
[RFC6952] Jethanandani, M., Patel, K., and L. Zheng, "Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013, <https://www.rfc-editor.org/info/rfc6952>.
Acknowledgements
The authors wish to acknowledge comments from Ketan Talaulikar.
Contributors
The following people have contributed substantially to this document and should be considered coauthors:
Saikat Ray Individual Email: raysaikat@gmail.com
Hannes Gredler RtBrick Inc. Email: hannes@rtbrick.com
Ginsberg, et al. Standards Track [Page 9]
RFC 8571 BGP-LS Advertisement of IGP TE Metric Extensions March 2019
Authors' Addresses
Les Ginsberg (editor) Cisco Systems, Inc. United States of America
Email: ginsberg@cisco.com
Stefano Previdi Huawei Italy
Email: stefano@previdi.net
Qin Wu Huawei 101 Software Avenue, Yuhua District Nanjing, Jiangsu 210012 China
Email: bill.wu@huawei.com
Jeff Tantsura Apstra, Inc. United States of America
Email: jefftant.ietf@gmail.com
Clarence Filsfils Cisco Systems, Inc. Brussels Belgium