RFC 8972




Internet Engineering Task Force (IETF)                         G. Mirsky
Request for Comments: 8972                                        X. Min
Updates: 8762                                                  ZTE Corp.
Category: Standards Track                                      H. Nydell
ISSN: 2070-1721                                        Accedian Networks
                                                                R. Foote
                                                                   Nokia
                                                             A. Masputra
                                                              Apple Inc.
                                                              E. Ruffini
                                                                  OutSys
                                                            January 2021


     Simple Two-Way Active Measurement Protocol Optional Extensions

Abstract



   This document describes optional extensions to Simple Two-way Active
   Measurement Protocol (STAMP) that enable measurement of performance
   metrics.  The document also defines a STAMP Test Session Identifier
   and thus updates RFC 8762.

Status of This Memo



   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8972.

Copyright Notice



   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents



   1.  Introduction
   2.  Conventions Used in This Document
     2.1.  Acronyms
     2.2.  Requirements Language
   3.  STAMP Test Session Identifier
   4.  TLV Extensions to STAMP
     4.1.  Extra Padding TLV
     4.2.  Location TLV
       4.2.1.  Location Sub-TLVs
       4.2.2.  Theory of Operation of Location TLV
     4.3.  Timestamp Information TLV
     4.4.  Class of Service TLV
     4.5.  Direct Measurement TLV
     4.6.  Access Report TLV
     4.7.  Follow-Up Telemetry TLV
     4.8.  HMAC TLV
   5.  IANA Considerations
     5.1.  STAMP TLV Types Subregistry
     5.2.  STAMP TLV Flags Subregistry
     5.3.  STAMP Sub-TLV Types Subregistry
     5.4.  STAMP Synchronization Sources Subregistry
     5.5.  STAMP Timestamping Methods Subregistry
     5.6.  STAMP Return Codes Subregistry
   6.  Security Considerations
   7.  References
     7.1.  Normative References
     7.2.  Informative References
   Acknowledgments
   Contributors

   Authors' Addresses



1.  Introduction



   The Simple Two-way Active Measurement Protocol (STAMP) [RFC8762]
   defines the STAMP base functionalities.  This document specifies the
   use of optional extensions that use Type-Length-Value (TLV) encoding.
   Such extensions enhance the STAMP base functions, such as measurement
   of one-way and round-trip delay, latency, packet loss, packet
   duplication, and out-of-order delivery of test packets.  This
   specification defines optional STAMP extensions, their formats, and
   the theory of operation.  Also, a STAMP Test Session Identifier is
   defined as an update of the base STAMP specification [RFC8762].

2.  Conventions Used in This Document



2.1.  Acronyms



   BDS         BeiDou Navigation Satellite System

   BITS        Building Integrated Timing Supply

   CoS         Class of Service

   DSCP        Differentiated Services Code Point

   ECN         Explicit Congestion Notification

   GLONASS     Global Orbiting Navigation Satellite System

   GPS         Global Positioning System [GPS]

   HMAC        Hashed Message Authentication Code

   LORAN-C     Long Range Navigation System Version C

   MBZ         Must Be Zero

   NTP         Network Time Protocol [RFC5905]

   PMF         Performance Measurement Function

   PTP         Precision Time Protocol [IEEE.1588.2008]

   RP          Reverse Path

   SMI         Structure of Management Information

   SSID        STAMP Session Identifier

   SSU         Synchronization Supply Unit

   STAMP       Simple Two-way Active Measurement Protocol

   TLV         Type-Length-Value

2.2.  Requirements Language



   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in
   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  STAMP Test Session Identifier



   The STAMP Session-Sender transmits test packets to the STAMP Session-
   Reflector.  The STAMP Session-Reflector receives the Session-Sender's
   packet and acts according to the configuration and optional control
   information communicated in the Session-Sender's test packet.  STAMP
   defines two different test packet formats: one for packets
   transmitted by the STAMP Session-Sender and one for packets
   transmitted by the STAMP Session-Reflector.  STAMP supports two
   modes: unauthenticated and authenticated.  Unauthenticated STAMP test
   packets are compatible on the wire with unauthenticated TWAMP-Test
   [RFC5357] packets.

   By default, STAMP uses symmetrical packets, i.e., the size of the
   packet transmitted by the Session-Reflector equals the size of the
   packet received by the Session-Reflector.

   A STAMP Session is identified by the 4-tuple (source and destination
   IP addresses, source and destination UDP port numbers).  A STAMP
   Session-Sender MAY generate a locally unique STAMP Session Identifier
   (SSID).  The SSID is a two-octet, non-zero unsigned integer.  The
   SSID generation policy is implementation specific.  [NUM-IDS-GEN]
   thoroughly analyzes common algorithms for identifier generation and
   their vulnerabilities.  For example, an implementation can use the
   algorithms described in Section 7.1 of [NUM-IDS-GEN].  An
   implementation MUST NOT assign the same identifier to different STAMP
   test sessions.  A Session-Sender MAY use the SSID to identify a STAMP
   test session.  If the SSID is used, it MUST be present in each test
   packet of the given test session.  In the unauthenticated mode, the
   SSID is located as displayed in Figure 1.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Sequence Number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Timestamp                            |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Error Estimate        |             SSID              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                                                               |
      |                         MBZ (28 octets)                       |
      |                                                               |
      |                                                               |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                            TLVs                               ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 1: The Format of an Extended STAMP Session-Sender Test
                       Packet in Unauthenticated Mode

   An implementation of the STAMP Session-Reflector that supports this
   specification MUST identify a STAMP Session using the SSID in
   combination with elements of the usual 4-tuple for the session.
   Before a test session commences, a Session-Reflector MUST be
   provisioned with all the elements that identify the STAMP Session.  A
   STAMP Session-Reflector MUST discard non-matching STAMP test packets.
   The means of provisioning the STAMP Session identification is outside
   the scope of this specification.  A conforming implementation of a
   STAMP Session-Reflector MUST copy the SSID value from the received
   test packet and put it into the reflected packet, as displayed in
   Figure 2.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Sequence Number                        |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                          Timestamp                            |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |         Error Estimate        |           SSID                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                          Receive Timestamp                    |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                 Session-Sender Sequence Number                |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                  Session-Sender Timestamp                     |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    | Session-Sender Error Estimate |           MBZ                 |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |Ses-Sender TTL |                   MBZ                         |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                            TLVs                               ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 2: The Format of an Extended STAMP Session-Reflector Test
                       Packet in Unauthenticated Mode

   A STAMP Session-Reflector that does not support this specification
   will return the zeroed SSID field in the reflected STAMP test packet.
   The Session-Sender MAY stop the session if it receives a zeroed SSID
   field.  An implementation of a Session-Sender MUST support control of
   its behavior in such a scenario.  If the test session is not stopped,
   the Session-Sender can, for example, send a base STAMP packet
   [RFC8762] or continue transmitting STAMP test packets with the SSID.

   The location of the SSID field in the authenticated mode is shown in
   Figures 3 and 4.

     0                   1                   2                   3
     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                      Sequence Number                          |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                      MBZ (12 octets)                          |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                        Timestamp                              |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |        Error Estimate         |            SSID               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                                                               ~
    |                         MBZ (68 octets)                       |
    ~                                                               ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    |                                                               |
    |                       HMAC (16 octets)                        |
    |                                                               |
    |                                                               |
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    ~                            TLVs                               ~
    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

       Figure 3: The Format of an Extended STAMP Session-Sender Test
                        Packet in Authenticated Mode

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Sequence Number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        MBZ (12 octets)                        |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                          Timestamp                            |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |         Error Estimate        |            SSID               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        MBZ (4 octets)                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Receive Timestamp                      |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        MBZ (8 octets)                         |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Session-Sender Sequence Number                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        MBZ (12 octets)                        |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                 Session-Sender Timestamp                      |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      | Session-Sender Error Estimate |                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
      |                        MBZ (6 octets)                         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |Ses-Sender TTL |                                               |
      +-+-+-+-+-+-+-+-+                                               +
      |                                                               |
      |                        MBZ (15 octets)                        |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        HMAC (16 octets)                       |
      |                                                               |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                            TLVs                               ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      Figure 4: The Format of an Extended STAMP Session-Reflector Test
                        Packet in Authenticated Mode

4.  TLV Extensions to STAMP



   The Type-Length-Value (TLV) encoding scheme provides a flexible
   extension mechanism for optional informational elements.  TLV is an
   optional field in the STAMP test packet.  Multiple TLVs MAY be placed
   in a STAMP test packet.  Additional TLVs may be enclosed within a
   given TLV, subject to the semantics of the (outer) TLV in question.
   TLVs have a one-octet STAMP TLV Flags field, a one-octet Type field,
   and a two-octet Length field that is equal to the length of the Value
   field in octets.  If a Type value for a TLV or sub-TLV is in the
   range for Private Use [RFC8126], the length MUST be at least 4, and
   the first four octets MUST be that vendor's Structure of Management
   Information (SMI) Private Enterprise Code, as recorded in IANA's "SMI
   Network Management Private Enterprise Codes" subregistry, in network
   octet order.  The rest of the Value field is private to the vendor.
   The following sections describe the use of TLVs for STAMP that extend
   the STAMP capability beyond its base specification.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAMP TLV Flags|     Type      |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                            Value                              ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 5: TLV Format in a STAMP Extended Packet

   The fields are defined as follows:

   STAMP TLV Flags:  An eight-bit field.  The detailed format and
      interpretation of flags defined in this specification are below.

   Type:  A one-octet field that characterizes the interpretation of the
      Value field.  It is allocated by IANA, as specified in
      Section 5.1.

   Length:  A two-octet field equal to the length of the Value field in
      octets.

   Value:  A variable-length field.  Its interpretation and encoding are
      determined by the value of the Type field.

   All multi-byte fields in TLVs defined in this specification are in
   network byte order.

   The format of the STAMP TLV Flags is displayed in Figure 6, and the
   location of flags is defined in Section 5.2.

       0 1 2 3 4 5 6 7
      +-+-+-+-+-+-+-+-+
      |U|M|I|R|R|R|R|R|
      +-+-+-+-+-+-+-+-+



                      Figure 6: STAMP TLV Flags Format

   The fields are defined as follows:

   U (Unrecognized):  A one-bit flag.  A Session-Sender MUST set the U
      flag to 1 before transmitting an extended STAMP test packet.  A
      Session-Reflector MUST set the U flag to 1 if the Session-
      Reflector has not understood the TLV.  Otherwise, the Session-
      Reflector MUST set the U flag in the reflected packet to 0.

   M (Malformed):  A one-bit flag.  A Session-Sender MUST set the M flag
      to 0 before transmitting an extended STAMP test packet.  A
      Session-Reflector MUST set the M flag to 1 if the Session-
      Reflector determined the TLV is malformed, i.e., the Length field
      value is not valid for the particular type, or the remaining
      length of the extended STAMP packet is less than the size of the
      TLV.  Otherwise, the Session-Reflector MUST set the M flag in the
      reflected packet to 0.

   I (Integrity):  A one-bit flag.  A Session-Sender MUST set the I flag
      to 0 before transmitting an extended STAMP test packet.  A
      Session-Reflector MUST set the I flag to 1 if the STAMP extensions
      have failed HMAC verification (Section 4.8).  Otherwise, the
      Session-Reflector MUST set the I flag in the reflected packet to
      0.

   R:  Reserved flags for future use.  These flags MUST be zeroed on
      transmit and ignored on receipt.



   A STAMP node, whether Session-Sender or Session-Reflector, receiving
   a test packet MUST determine whether the packet is a base STAMP
   packet or whether it includes one or more TLVs.  The node MUST
   compare the value in the Length field of the UDP header and the
   length of the base STAMP test packet in the mode, unauthenticated or
   authenticated, based on the configuration of the particular STAMP
   test session.  If the difference between the two values is greater
   than the length of the UDP header, then the test packet includes one
   or more STAMP TLVs that immediately follow the base STAMP test
   packet.  A Session-Reflector that does not support STAMP extensions
   will not process but copy them into the reflected packet, as defined
   in Section 4.3 of [RFC8762].  A Session-Reflector that supports TLVs
   will indicate specific TLVs that it did not process by setting the U
   flag to 1 in those TLVs.

   A STAMP Session-Sender that has received a reflected STAMP test
   packet with extension TLVs MUST validate each TLV:

   *  If the U flag is set, the STAMP system MUST skip the processing of
      the TLV.

   *  If the M flag is set, the STAMP system MUST stop processing the
      remainder of the extended STAMP packet.

   *  If the I flag is set, the STAMP system MUST discard all TLVs and
      MUST stop processing the remainder of the extended STAMP packet.

   *  If an implementation of a Session-Reflector does not recognize the
      Type field value, it MUST include a copy of the TLV in the
      reflected STAMP packet.  The Session-Reflector MUST set the U flag
      to 1.  The Session-Reflector MUST skip the processing of the
      unrecognized TLV.

   *  If a TLV is malformed, the processing of extension TLVs MUST be
      stopped.  The Session-Reflector MUST copy the remainder of the
      received extended STAMP packet into the reflected STAMP packet.
      The Session-Reflector MUST set the M flag to 1.


4.1.  Extra Padding TLV



       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAMP TLV Flags|      Type     |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      ~                         Extra Padding                         ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 7: Extra Padding TLV

   The fields are defined as follows:

   STAMP TLV Flags:  An eight-bit field.  Its format is presented in
      Figure 6.

   Type:  A one-octet field.  Value 1 has been allocated by IANA
      (Section 5.1).

   Length:  A two-octet field equal to the length of the Extra Padding
      field in octets.

   Extra Padding:  This field SHOULD be filled by a sequence of
      pseudorandom numbers.  The field MAY be filled with all zeros.  An
      implementation MUST control the content of the Extra Padding
      field.

   The Extra Padding TLV is similar to the Packet Padding field in a
   TWAMP-Test packet [RFC5357].  The use of the Extra Padding TLV is
   RECOMMENDED to perform a STAMP test using test packets that are
   larger than the base STAMP packet [RFC8762].  The length of the base
   STAMP packet is 44 octets in the unauthenticated mode or 112 octets
   in the authenticated mode.  The Extra Padding TLV MAY be present more
   than one time in an extended STAMP test packet.

4.2.  Location TLV



   STAMP Session-Senders MAY include the variable-size Location TLV to
   query location information from the Session-Reflector.  The Session-
   Sender MUST NOT fill any information fields except for the STAMP TLV
   Flags, Type, and Length fields.  The Session-Reflector MUST verify
   that the TLV is well formed.  If it is not, the Session-Reflector
   follows the procedure defined in Section 4 for a malformed TLV.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAMP TLV Flags|      Type     |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |        Destination Port       |          Source Port          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                         Sub-TLVs                              ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                           Figure 8: Location TLV

   The fields are defined as follows:

   STAMP TLV Flags:  An eight-bit field.  Its format is presented in
      Figure 6.

   Type:  A one-octet field.  Value 2 has been allocated by IANA
      (Section 5.1).

   Length:  A two-octet field equal to the length of the Value field in
      octets.

   Destination Port:  A two-octet UDP destination port number of the
      received STAMP packet.

   Source Port:  A two-octet UDP source port number of the received
      STAMP packet.

   Sub-TLVs:  A sequence of sub-TLVs, as defined further in this
      section.  The sub-TLVs are used by the Session-Sender to request
      location information with generic sub-TLV types, and the Session-
      Reflector responds with the corresponding more-specific sub-TLVs
      for the type of address (e.g., IPv4 or IPv6) used at the Session-
      Reflector.

   Note that all fields not filled by either a Session-Sender or
   Session-Reflector are transmitted with all bits set to zero.

4.2.1.  Location Sub-TLVs



   A sub-TLV in the Location TLV uses the format displayed in Figure 5.
   Handling of the U and M flags in the sub-TLV is as defined in
   Section 4.  The I flag MUST be set by a Session-Sender and Session-
   Reflector to 0 before transmission and its value ignored on receipt.
   The following types of sub-TLVs for the Location TLV are defined in
   this specification (Table 5 lists the Type values):

   Source MAC Address sub-TLV:  A 12-octet sub-TLV.  The Type value is
      1.  The value of the Length field MUST be equal to 8.  The Value
      field is an 8-octet MBZ field that MUST be zeroed on transmission
      and ignored on receipt.

   Source EUI-48 Address sub-TLV:  A 12-octet sub-TLV that includes the
      EUI-48 source MAC address.  The Type value is 2.  The value of the
      Length field MUST be equal to 8.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        EUI-48  Address                        |
      +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                               |            MBZ                |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

        Figure 9: The Value Field of the Source EUI-48 Address Sub-TLV

      The Value field consists of the following fields (Figure 9):

      EUI-48 Address:  A six-octet field.

      MBZ:  A two-octet field.  It MUST be zeroed on transmission and
         ignored on receipt.

   Source EUI-64 Address sub-TLV:  A 12-octet sub-TLV that includes the
      EUI-64 source MAC address.  The Type value is 3.  The value of the
      Length field MUST be equal to 8.  The Value field consists of an
      eight-octet EUI-64 field.

   Destination IP Address sub-TLV:  A 20-octet sub-TLV.  The Type value
      is 4.  The value of the Length field MUST be equal to 16.  The
      Value field consists of a 16-octet MBZ field that MUST be zeroed
      on transmit and ignored on receipt.

   Destination IPv4 Address sub-TLV:  A 20-octet sub-TLV that includes
      the IPv4 destination address.  The Type value is 5.  The value of
      the Length field MUST be equal to 16.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                         IPv4 Address                          |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                        MBZ (12 octets)                        ~
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

              Figure 10: IPv4 Address in a Sub-TLV's Value Field

      The Value field consists of the following fields (Figure 10):

      IPv4 Address:  A four-octet field.

      MBZ:  A 12-octet field.  It MUST be zeroed on transmit and ignored
         on receipt.

   Destination IPv6 Address sub-TLV:  A 20-octet sub-TLV that includes
      the IPv6 destination address.  The Type value is 6.  The value of
      the Length field MUST be equal to 16.  The Value field is a
      16-octet IPv6 Address field.

   Source IP Address sub-TLV:  A 20-octet sub-TLV.  The Type value is 7.
      The value of the Length field MUST be equal to 16.  The Value
      field is a 16-octet MBZ field that MUST be zeroed on transmit and
      ignored on receipt.

   Source IPv4 Address sub-TLV:  A 20-octet sub-TLV that includes the
      IPv4 source address.  The Type value is 8.  The value of the
      Length field MUST be equal to 16.  The Value field consists of the
      following fields (Figure 10):

      IPv4 Address:  A four-octet field.

      MBZ:  A 12-octet field.  It MUST be zeroed on transmit and ignored
         on receipt.

   Source IPv6 Address sub-TLV:  A 20-octet sub-TLV that includes the
      IPv6 source address.  The Type value is 9.  The value of the
      Length field MUST be equal to 16.  The Value field is a 16-octet
      IPv6 Address field.

4.2.2.  Theory of Operation of Location TLV



   The Session-Reflector that received an extended STAMP packet with the
   Location TLV MUST include in the reflected packet the Location TLV
   with a length equal to the Location TLV length in the received
   packet.  Based on the local policy, the Session-Reflector MAY leave
   some fields unreported by filling them with zeroes.  An
   implementation of the stateful Session-Reflector MUST provide control
   for managing such policies.

   A Session-Sender MAY include the Source MAC Address sub-TLV in the
   Location TLV.  If the Session-Reflector receives the Location TLV
   that includes the Source MAC Address sub-TLV, it MUST include the
   Source EUI-48 Address sub-TLV if the source MAC address of the
   received extended test packet is in EUI-48 format.  And the Session-
   Reflector MUST copy the value of the source MAC address in the EUI-48
   field.  Otherwise, the Session-Reflector MUST use the Source EUI-64
   Address sub-TLV and MUST copy the value of the Source MAC Address
   from the received packet into the EUI-64 field.  If the received
   extended STAMP test packet does not have the Source MAC Address, the
   Session-Reflector MUST zero the EUI-64 field before transmitting the
   reflected packet.

   A Session-Sender MAY include the Destination IP Address sub-TLV in
   the Location TLV.  If the Session-Reflector receives the Location TLV
   that includes the Destination IP Address sub-TLV, it MUST include the
   Destination IPv4 Address sub-TLV if the source IP address of the
   received extended test packet is of the IPv4 address family.  And the
   Session-Reflector MUST copy the value of the destination IP address
   in the IPv4 Address field.  Otherwise, the Session-Reflector MUST use
   the Destination IPv6 Address sub-TLV and MUST copy the value of the
   destination IP address from the received packet into the IPv6 Address
   field.

   A Session-Sender MAY include the Source IP Address sub-TLV in the
   Location TLV.  If the Session-Reflector receives the Location TLV
   that includes the Source IP Address sub-TLV, it MUST include the
   Source IPv4 Address sub-TLV if the source IP address of the received
   extended test packet is of the IPv4 address family.  And the Session-
   Reflector MUST copy the value of the source IP address in the IPv4
   Address field.  Otherwise, the Session-Reflector MUST use the Source
   IPv6 Address sub-TLV and MUST copy the value of the source IP address
   from the received packet into the IPv6 Address field.

   The Location TLV MAY be used to determine the last-hop IP addresses,
   ports, and last-hop MAC address for STAMP packets.  The MAC address
   can indicate a path switch on the last hop.  The IP addresses and UDP
   ports will indicate if there is a NAT router on the path.  It allows
   the Session-Sender to identify the IP address of the Session-
   Reflector behind the NAT and detect changes in the NAT mapping that
   could result in sending the STAMP packets to the wrong Session-
   Reflector.

4.3.  Timestamp Information TLV



   The STAMP Session-Sender MAY include the Timestamp Information TLV to
   request information from the Session-Reflector.  The Session-Sender
   MUST NOT fill any information fields except for STAMP TLV Flags,
   Type, and Length.  All other fields MUST be filled with zeroes.  The
   Session-Reflector MUST validate the Length value of the TLV.  If the
   value of the Length field is invalid, the Session-Reflector follows
   the procedure defined in Section 4 for a malformed TLV.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAMP TLV Flags|      Type     |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Sync Src In  | Timestamp In  | Sync Src Out  | Timestamp Out |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                    Optional sub-TLVs                          ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                    Figure 11: Timestamp Information TLV

   The fields are defined as follows:

   STAMP TLV Flags:  An eight-bit field.  Its format is presented in
      Figure 6.

   Type:  A one-octet field.  Value 3 has been allocated by IANA
      (Section 5.1).

   Length:  A two-octet field, set equal to the length of the Value
      field in octets (Figure 5).

   Sync Src In:  A one-octet field that characterizes the source of
      clock synchronization at the ingress of a Session-Reflector.
      There are several methods for synchronizing the clock, e.g., the
      Network Time Protocol (NTP) [RFC5905].  Table 7 lists the possible
      values.

   Timestamp In:  A one-octet field that characterizes the method by
      which the ingress of the Session-Reflector obtained the timestamp
      T2.  A timestamp may be obtained with hardware assistance via a
      software API from a local wall clock or from a remote clock (the
      latter is referred to as a "control plane").  Table 9 lists the
      possible values.

   Sync Src Out:  A one-octet field that characterizes the source of
      clock synchronization at the egress of the Session-Reflector.
      Table 7 lists the possible values.

   Timestamp Out:  A one-octet field that characterizes the method by
      which the egress of the Session-Reflector obtained the timestamp
      T3.  Table 9 lists the possible values.

   Optional sub-TLVs:  An optional variable-length field.

4.4.  Class of Service TLV



   The STAMP Session-Sender MAY include a Class of Service (CoS) TLV in
   the STAMP test packet.  The format of the CoS TLV is presented in
   Figure 12.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAMP TLV Flags|      Type     |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   DSCP1   |   DSCP2   |ECN| RP|          Reserved             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 12: Class of Service TLV

   The fields are defined as follows:

   STAMP TLV Flags:  An eight-bit field.  Its format is presented in
      Figure 6.

   Type:  A one-octet field.  Value 4 has been allocated by IANA
      (Section 5.1).

   Length:  A two-octet field, set equal to the value 4.

   DSCP1:  The Differentiated Services Code Point (DSCP) intended by the
      Session-Sender to be used as the DSCP value of the reflected test
      packet.

   DSCP2:  The received value in the DSCP field at the ingress of the
      Session-Reflector.

   ECN:  The received value in the ECN field at the ingress of the
      Session-Reflector.

   RP (Reverse Path):  A two-bit field.  A Session-Sender MUST set the
      value of the RP field to 0 on transmission.

   Reserved:  A 16-bit field that MUST be zeroed on transmission and
      ignored on receipt.

   A STAMP Session-Reflector that receives a test packet with the CoS
   TLV MUST include the CoS TLV in the reflected test packet.  Also, the
   Session-Reflector MUST copy the value of the DSCP and ECN fields of
   the IP header of the received STAMP test packet into the DSCP2 field
   in the reflected test packet.  Finally, the Session-Reflector MUST
   use the local policy to verify whether the CoS corresponding to the
   value of the DSCP1 field is permitted in the domain.  If it is, the
   Session-Reflector MUST set the DSCP field's value in the IP header of
   the reflected test packet equal to the value of the DSCP1 field of
   the received test packet.  Otherwise, the Session-Reflector MUST use
   the DSCP value of the received STAMP packet and set the value of the
   RP field to 1.  Upon receiving the reflected packet, if the value of
   the RP field is 0, the Session-Sender will save the DSCP and ECN
   values for analysis of the CoS in the reverse direction.  If the
   value of the RP field in the received reflected packet is 1, only CoS
   in the forward direction can be analyzed.

   Re-mapping of CoS can be used to provide multiple services (e.g., 2G,
   3G, LTE in mobile backhaul networks) over the same network.  But if
   it is misconfigured, then it is often difficult to diagnose the root
   cause of excessive packet drops of higher-level service while packet
   drops for lower service packets are at a normal level.  Using a CoS
   TLV in STAMP testing helps to troubleshoot the existing problem and
   also verify whether Diffserv policies are processing CoS as required
   by the configuration.

4.5.  Direct Measurement TLV



   The Direct Measurement TLV enables collection of the number of in-
   profile packets, i.e., packets that form a specific data flow, that
   had been transmitted and received by the Session-Sender and Session-
   Reflector, respectively.  The definition of "in-profile packet" is
   outside the scope of this document and is left to the test operators
   to determine.

       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAMP TLV Flags|      Type     |           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |              Session-Sender Tx counter  (S_TxC)               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Session-Reflector Rx counter  (R_RxC)             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |             Session-Reflector Tx counter  (R_TxC)             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 13: Direct Measurement TLV

   The fields are defined as follows:

   STAMP TLV Flags:  An eight-bit field.  Its format is presented in
      Figure 6.

   Type:  A one-octet field.  Value 5 has been allocated by IANA
      (Section 5.1).

   Length:  A two-octet field equal to the length of the Value field in
      octets.  The Length field value MUST equal 12 octets.

   Session-Sender Tx counter (S_TxC):  A four-octet field.  The Session-
      Sender MUST set its value equal to the number of the transmitted
      in-profile packets.

   Session-Reflector Rx counter (R_RxC):  A four-octet field.  It MUST
      be zeroed by the Session-Sender on transmit and ignored by the
      Session-Reflector on receipt.  The Session-Reflector MUST fill it
      with the value of in-profile packets received.

   Session-Reflector Tx counter (R_TxC):  A four-octet field.  It MUST
      be zeroed by the Session-Sender and ignored by the Session-
      Reflector on receipt.  The Session-Reflector MUST fill it with the
      value of the transmitted in-profile packets.

   A Session-Sender MAY include the Direct Measurement TLV in a STAMP
   test packet.  If the received STAMP test packet includes the Direct
   Measurement TLV, the Session-Reflector MUST include it in the
   reflected test packet.  The Session-Reflector MUST copy the value
   from the S_TxC field of the received test packet into the same field
   of the reflected packet before its transmission.

4.6.  Access Report TLV



   A STAMP Session-Sender MAY include an Access Report TLV (Figure 14)
   to indicate changes to the access network status to the Session-
   Reflector.  The definition of an access network is outside the scope
   of this document.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |STAMP TLV Flags|     Type      |           Length              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |   ID  |  Resv |  Return Code  |          Reserved             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                        Figure 14: Access Report TLV

   The fields are defined as follows:

   STAMP TLV Flags:  An eight-bit field.  Its format is presented in
      Figure 6.

   Type:  A one-octet field.  Value 6 has been allocated by IANA
      (Section 5.1).

   Length:  A two-octet field, set equal to the value 4.

   ID (Access ID):  A four-bit field that identifies the access network,
      e.g., 3GPP (Radio Access Technologies specified by 3GPP) or non-
      3GPP (accesses that are not specified by 3GPP) [TS23501].  The
      value is one of the following:

      1:  3GPP Network

      2:  Non-3GPP Network

      All other values are invalid; a TLV that contains values other
      than '1' or '2' MUST be discarded.

   Resv:  A four-bit field that MUST be zeroed on transmission and
      ignored on receipt.

   Return Code:  A one-octet field that identifies the report signal,
      e.g., available or unavailable.  The value is supplied to the
      STAMP endpoint through some mechanism that is outside the scope of
      this document.  Section 5.6 lists the possible values.

   Reserved:  A two-octet field that MUST be zeroed on transmission and
      ignored on receipt.

   The STAMP Session-Sender that includes the Access Report TLV sets the
   value of the Access ID field according to the type of access network
   it reports on.  Also, the Session-Sender sets the value of the Return
   Code field to reflect the operational state of the access network.
   The mechanism to determine the state of the access network is outside
   the scope of this specification.  A STAMP Session-Reflector that
   received the test packet with the Access Report TLV MUST include the
   Access Report TLV in the reflected test packet.  The Session-
   Reflector MUST set the value of the Access ID and Return Code fields
   equal to the values of the corresponding fields from the test packet
   it has received.

   The Session-Sender MUST also arm a retransmission timer after sending
   a test packet that includes the Access Report TLV.  This timer MUST
   be disarmed upon reception of the reflected STAMP test packet that
   includes the Access Report TLV.  In the event the timer expires
   before such a packet is received, the Session-Sender MUST retransmit
   the STAMP test packet that contains the Access Report TLV.  This
   retransmission SHOULD be repeated up to four times before the
   procedure is aborted.  Setting the value for the retransmission timer
   is based on local policies and the network environment.  The default
   value of the retransmission timer for the Access Report TLV SHOULD be
   three seconds.  An implementation MUST provide control of the
   retransmission timer value and the number of retransmissions.

   The Access Report TLV is used by the Performance Measurement Function
   (PMF) components of the Access Steering, Switching, and Splitting
   feature for 5G networks [TS23501].  The PMF component in the User
   Equipment acts as the STAMP Session-Sender, and the PMF component in
   the User Plane Function acts as the STAMP Session-Reflector.

4.7.  Follow-Up Telemetry TLV



   A Session-Reflector might be able to put only an "SW Local" (see
   Table 9) timestamp in the Follow-Up Timestamp field.  But the hosting
   system might provide a timestamp closer to the start of the actual
   packet transmission even though it is not possible to deliver the
   information to the Session-Sender in time for the packet itself.
   This timestamp might nevertheless be important for the Session-
   Sender, as it improves the accuracy of network delay measurement by
   minimizing the impact of egress queuing delays on the measurement.

   A STAMP Session-Sender MAY include the Follow-Up Telemetry TLV to
   request information from the Session-Reflector.  The Session-Sender
   MUST set the Follow-Up Telemetry Type and Length fields to their
   appropriate values.  The Sequence Number and Follow-Up Timestamp
   fields MUST be zeroed on transmission by the Session-Sender and
   ignored by the Session-Reflector upon receipt of the STAMP test
   packet that includes the Follow-Up Telemetry TLV.  The Session-
   Reflector MUST validate the Length value of the STAMP test packet.
   If the value of the Length field is invalid, the Session-Reflector
   MUST zero the Sequence Number and Follow-Up Timestamp fields and set
   the M flag in the STAMP TLV Flags field in the reflected packet.  If
   the Session-Reflector is in the stateless mode (defined in
   Section 4.2 of [RFC8762]), it MUST zero the Sequence Number and
   Follow-Up Timestamp fields.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |STAMP TLV Flags|      Type     |           Length              |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                        Sequence Number                        |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                      Follow-Up Timestamp                      |
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |  Timestamp M  |                     Reserved                  |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 15: Follow-Up Telemetry TLV

   The fields are defined as follows:

   STAMP TLV Flags:  An eight-bit field.  Its format is presented in
      Figure 6.

   Type:  A one-octet field.  Value 7 has been allocated by IANA
      (Section 5.1).

   Length:  A two-octet field, set equal to the value 16 octets.

   Sequence Number:  A four-octet field indicating the sequence number
      of the last packet reflected in the same STAMP test session.
      Since the Session-Reflector runs in the stateful mode (defined in
      Section 4.2 of [RFC8762]), it is the Session-Reflector's Sequence
      Number of the previous reflected packet.

   Follow-Up Timestamp:  An eight-octet field, with the format indicated
      by the Z flag of the Error Estimate field of the STAMP base
      packet, which is contained in this reflected test packet
      transmitted by a Session-Reflector, as described in Section 4.2.1
      of [RFC8762].  It carries the timestamp when the reflected packet
      with the specified sequence number was sent.

   Timestamp M(ode):  A one-octet field that characterizes the method by
      which the entity that transmits a reflected STAMP packet obtained
      the Follow-Up Timestamp.  Table 9 lists the possible values.

   Reserved:  A three-octet field.  Its value MUST be zeroed on
      transmission and ignored on receipt.

4.8.  HMAC TLV



   The STAMP authenticated mode protects the integrity of data collected
   in the STAMP base packet.  STAMP extensions are designed to provide
   valuable information about the condition of a network, and protecting
   the integrity of that data is also essential.  All authenticated
   STAMP base packets (per Sections 4.2.2 and 4.3.2 of [RFC8762])
   compatible with this specification MUST additionally authenticate the
   optional TLVs by including the keyed Hashed Message Authentication
   Code (HMAC) TLV, with the sole exception of when there is only one
   TLV present and it is the Extended Padding TLV.  The HMAC TLV MUST
   follow all TLVs included in a STAMP test packet except for the Extra
   Padding TLV.  If the HMAC TLV appears in any other position in a
   STAMP extended test packet, then the situation MUST be processed as
   HMAC verification failure, as defined below in this section.  The
   HMAC TLV MAY be used to protect the integrity of STAMP extensions in
   the STAMP unauthenticated mode.  An implementation of STAMP
   extensions MUST provide controls to enable the integrity protection
   of STAMP extensions in the STAMP unauthenticated mode.


       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAMP TLV Flags|      Type     |             Length            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                                                               |
      |                              HMAC                             |
      |                                                               |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                            Figure 16: HMAC TLV

   The fields are defined as follows:

   STAMP TLV Flags:  An eight-bit field.  Its format is presented in
      Figure 6.

   Type:  A one-octet field.  Value 8 has been allocated by IANA
      (Section 5.1).

   Length:  A two-octet field, set equal to the value 16 octets.

   HMAC:  A 16-octet field that carries the HMAC digest of the text of
      all preceding TLVs.

   As defined in [RFC8762], STAMP uses HMAC-SHA-256 truncated to 128
   bits (see [RFC4868]).  All considerations regarding using the key
   listed in Section 4.4 of [RFC8762] are fully applicable to the use of
   the HMAC TLV.  Key management and the mechanisms to distribute the
   HMAC key are outside the scope of this specification.  The HMAC TLV
   is anticipated to track updates in the base STAMP protocol [RFC8762],
   including the use of more advanced cryptographic algorithms.  HMAC is
   calculated as defined in [RFC2104] over text as the concatenation of
   the Sequence Number field of the base STAMP packet and all preceding
   TLVs.  The digest then MUST be truncated to 128 bits and written into
   the HMAC field.  If the HMAC TLV is present in the extended STAMP
   test packet, e.g., in the authenticated mode, HMAC MUST be verified
   before using any data in the included STAMP TLVs.  If HMAC
   verification by the Session-Reflector fails, then the Session-
   Reflector MUST stop processing the received extended STAMP test
   packet.  The Session-Reflector MUST copy the TLVs from the received
   STAMP test packet into the reflected packet.  The Session-Reflector
   MUST set the I flag in each TLV copied over into the reflected packet
   to 1 before transmitting the reflected test packet.  If the Session-
   Sender receives the extended STAMP test packet with I flag set to 1,
   then the Session-Sender MUST stop processing TLVs in the reflected
   test packet.  If HMAC verification by the Session-Sender fails, then
   the Session-Sender MUST stop processing TLVs in the reflected
   extended STAMP packet.

5.  IANA Considerations



   IANA has created the following subregistries under the "Simple Two-
   way Active Measurement Protocol (STAMP) TLV Types" registry.

5.1.  STAMP TLV Types Subregistry



   IANA has created the "STAMP TLV Types" subregistry.  The code points
   in this registry are allocated according to the registration
   procedures [RFC8126] described in Table 1.

                  +===========+=========================+
                  | Range     | Registration Procedures |
                  +===========+=========================+
                  | 1 - 175   |       IETF Review       |
                  +-----------+-------------------------+
                  | 176 - 239 | First Come First Served |
                  +-----------+-------------------------+
                  | 240 - 251 |     Experimental Use    |
                  +-----------+-------------------------+
                  | 252 - 254 |       Private Use       |
                  +-----------+-------------------------+

                      Table 1: Registration Procedures
                    for the STAMP TLV Types Subregistry

   Per this document, IANA has allocated the following values in the
   "STAMP TLV Types" subregistry:

               +=======+=======================+===========+
               | Value |      Description      | Reference |
               +=======+=======================+===========+
               | 0     |        Reserved       | RFC 8972  |
               +-------+-----------------------+-----------+
               | 1     |     Extra Padding     | RFC 8972  |
               +-------+-----------------------+-----------+
               | 2     |        Location       | RFC 8972  |
               +-------+-----------------------+-----------+
               | 3     | Timestamp Information | RFC 8972  |
               +-------+-----------------------+-----------+
               | 4     |    Class of Service   | RFC 8972  |
               +-------+-----------------------+-----------+
               | 5     |   Direct Measurement  | RFC 8972  |
               +-------+-----------------------+-----------+
               | 6     |     Access Report     | RFC 8972  |
               +-------+-----------------------+-----------+
               | 7     |  Follow-Up Telemetry  | RFC 8972  |
               +-------+-----------------------+-----------+
               | 8     |          HMAC         | RFC 8972  |
               +-------+-----------------------+-----------+
               | 255   |        Reserved       | RFC 8972  |
               +-------+-----------------------+-----------+

                          Table 2: STAMP TLV Types

5.2.  STAMP TLV Flags Subregistry



   IANA has created the "STAMP TLV Flags" subregistry.  The registration
   procedure is "IETF Review" [RFC8126].  The flags are 8 bits.  Per
   this document, IANA has allocated the following bit positions in the
   "STAMP TLV Flags" subregistry.

      +==============+========+========================+===========+
      | Bit position | Symbol |      Description       | Reference |
      +==============+========+========================+===========+
      |      0       |   U    |    Unrecognized TLV    |  RFC 8972 |
      +--------------+--------+------------------------+-----------+
      |      1       |   M    |     Malformed TLV      |  RFC 8972 |
      +--------------+--------+------------------------+-----------+
      |      2       |   I    | Integrity check failed |  RFC 8972 |
      +--------------+--------+------------------------+-----------+

                         Table 3: STAMP TLV Flags

5.3.  STAMP Sub-TLV Types Subregistry



   IANA has created the "STAMP Sub-TLV Types" subregistry.  The code
   points in this registry are allocated according to the registration
   procedures [RFC8126] described in Table 4.

                  +===========+=========================+
                  |   Range   | Registration Procedures |
                  +===========+=========================+
                  | 1 - 175   |       IETF Review       |
                  +-----------+-------------------------+
                  | 176 - 239 | First Come First Served |
                  +-----------+-------------------------+
                  | 240 - 251 |     Experimental Use    |
                  +-----------+-------------------------+
                  | 252 - 254 |       Private Use       |
                  +-----------+-------------------------+

                      Table 4: Registration Procedures
                        for the STAMP Sub-TLV Types
                                Subregistry

   Per this document, IANA has allocated the following values in the
   "STAMP Sub-TLV Types" subregistry:

        +=======+==========================+==========+===========+
        | Value |       Description        | TLV Used | Reference |
        +=======+==========================+==========+===========+
        | 0     |         Reserved         |          | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 1     |    Source MAC Address    | Location | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 2     |  Source EUI-48 Address   | Location | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 3     |  Source EUI-64 Address   | Location | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 4     |  Destination IP Address  | Location | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 5     | Destination IPv4 Address | Location | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 6     | Destination IPv6 Address | Location | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 7     |    Source IP Address     | Location | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 8     |   Source IPv4 Address    | Location | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 9     |   Source IPv6 Address    | Location | RFC 8972  |
        +-------+--------------------------+----------+-----------+
        | 255   |         Reserved         |          | RFC 8972  |
        +-------+--------------------------+----------+-----------+

                        Table 5: STAMP Sub-TLV Types

5.4.  STAMP Synchronization Sources Subregistry



   IANA has created the "STAMP Synchronization Sources" subregistry.
   The code points in this registry are allocated according to the
   registration procedures [RFC8126] described in Table 6.

                  +===========+=========================+
                  | Range     | Registration Procedures |
                  +===========+=========================+
                  | 1 - 127   |       IETF Review       |
                  +-----------+-------------------------+
                  | 128 - 239 | First Come First Served |
                  +-----------+-------------------------+
                  | 240 - 249 |     Experimental Use    |
                  +-----------+-------------------------+
                  | 250 - 254 |       Private Use       |
                  +-----------+-------------------------+

                      Table 6: Registration Procedures
                       for the STAMP Synchronization
                            Sources Subregistry

   Per this document, IANA has allocated the following values in the
   "STAMP Synchronization Sources" subregistry:

          +=======+=================================+===========+
          | Value |           Description           | Reference |
          +=======+=================================+===========+
          | 0     |             Reserved            | RFC 8972  |
          +-------+---------------------------------+-----------+
          | 1     |               NTP               | RFC 8972  |
          +-------+---------------------------------+-----------+
          | 2     |               PTP               | RFC 8972  |
          +-------+---------------------------------+-----------+
          | 3     |             SSU/BITS            | RFC 8972  |
          +-------+---------------------------------+-----------+
          | 4     | GPS/GLONASS/LORAN-C/BDS/Galileo | RFC 8972  |
          +-------+---------------------------------+-----------+
          | 5     |        Local free-running       | RFC 8972  |
          +-------+---------------------------------+-----------+
          | 255   |             Reserved            | RFC 8972  |
          +-------+---------------------------------+-----------+

                   Table 7: STAMP Synchronization Sources

5.5.  STAMP Timestamping Methods Subregistry



   IANA has created the "STAMP Timestamping Methods" subregistry.  The
   code points in this registry are allocated according to the
   registration procedures [RFC8126] described in Table 8.

                  +===========+=========================+
                  | Range     | Registration Procedures |
                  +===========+=========================+
                  | 1 - 127   |       IETF Review       |
                  +-----------+-------------------------+
                  | 128 - 239 | First Come First Served |
                  +-----------+-------------------------+
                  | 240 - 249 |     Experimental Use    |
                  +-----------+-------------------------+
                  | 250 - 254 |       Private Use       |
                  +-----------+-------------------------+

                      Table 8: Registration Procedures
                     for the STAMP Timestamping Methods
                                Subregistry

   Per this document, IANA has allocated the following values in the
   "STAMP Timestamping Methods" subregistry:

                   +=======+===============+===========+
                   | Value |  Description  | Reference |
                   +=======+===============+===========+
                   | 0     |    Reserved   | RFC 8972  |
                   +-------+---------------+-----------+
                   | 1     |   HW Assist   | RFC 8972  |
                   +-------+---------------+-----------+
                   | 2     |    SW Local   | RFC 8972  |
                   +-------+---------------+-----------+
                   | 3     | Control Plane | RFC 8972  |
                   +-------+---------------+-----------+
                   | 255   |    Reserved   | RFC 8972  |
                   +-------+---------------+-----------+

                    Table 9: STAMP Timestamping Methods

5.6.  STAMP Return Codes Subregistry



   IANA has created the "STAMP Return Codes" subregistry.  The code
   points in this registry are allocated according to the registration
   procedures [RFC8126] described in Table 10.

                  +===========+=========================+
                  | Range     | Registration Procedures |
                  +===========+=========================+
                  | 1 - 127   |       IETF Review       |
                  +-----------+-------------------------+
                  | 128 - 239 | First Come First Served |
                  +-----------+-------------------------+
                  | 240 - 249 |     Experimental Use    |
                  +-----------+-------------------------+
                  | 250 - 254 |       Private Use       |
                  +-----------+-------------------------+

                     Table 10: Registration Procedures
                         for the STAMP Return Codes
                                Subregistry

   Per this document, IANA has allocated the following values in the
   "STAMP Return Codes" subregistry:

                +=======+=====================+===========+
                | Value |     Description     | Reference |
                +=======+=====================+===========+
                | 0     |       Reserved      | RFC 8972  |
                +-------+---------------------+-----------+
                | 1     |  Network available  | RFC 8972  |
                +-------+---------------------+-----------+
                | 2     | Network unavailable | RFC 8972  |
                +-------+---------------------+-----------+
                | 255   |       Reserved      | RFC 8972  |
                +-------+---------------------+-----------+

                        Table 11: STAMP Return Codes

6.  Security Considerations



   This document defines extensions to STAMP [RFC8762] and inherits all
   the security considerations applicable to the base protocol.
   Additionally, the HMAC TLV is defined in this document.  Though the
   HMAC TLV protects the integrity of STAMP extensions, it does not
   protect against a replay attack.  The use of the HMAC TLV is
   discussed in detail in Section 4.8.

   To protect against a malformed TLV, an implementation of a Session-
   Sender and Session-Reflector MUST:

   *  check the setting of the M flag and

   *  validate the Length field value.

   As this specification defines the mechanism to test DSCP mapping,
   this document inherits all the security considerations discussed in
   [RFC2474].  Monitoring and optional control of DSCP using the CoS TLV
   may be used across the Internet so that the Session-Sender and the
   Session-Reflector are located in domains that use different CoS
   profiles.  Thus, it is essential that an operator verify the set of
   CoS values that is used in the Session-Reflector's domain.  Also, an
   implementation of a Session-Reflector SHOULD support a local policy
   to confirm whether the value sent by the Session-Sender can be used
   as the value of the DSCP field.  Section 4.4 defines the use of that
   local policy.

7.  References



7.1.  Normative References



   [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
              Hashing for Message Authentication", RFC 2104,
              DOI 10.17487/RFC2104, February 1997,
              <https://www.rfc-editor.org/info/rfc2104>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC8126]  Cotton, M., Leiba, B., and T. Narten, "Guidelines for
              Writing an IANA Considerations Section in RFCs", BCP 26,
              RFC 8126, DOI 10.17487/RFC8126, June 2017,
              <https://www.rfc-editor.org/info/rfc8126>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

   [RFC8762]  Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple
              Two-Way Active Measurement Protocol", RFC 8762,
              DOI 10.17487/RFC8762, March 2020,
              <https://www.rfc-editor.org/info/rfc8762>.

7.2.  Informative References



   [GPS]      "Global Positioning System (GPS) Standard Positioning
              Service (SPS) Performance Standard", GPS SPS 5th Edition,
              April 2020.

   [IEEE.1588.2008]
              "IEEE Standard for a Precision Clock Synchronization
              Protocol for Networked Measurement and Control Systems",
              IEEE Std. 1588-2008, DOI 10.1109/IEEESTD.2008.4579760,
              July 2008, <https://doi.org/10.1109/IEEESTD.2008.4579760>.

   [NUM-IDS-GEN]
              Gont, F. and I. Arce, "On the Generation of Transient
              Numeric Identifiers", Work in Progress, Internet-Draft,
              draft-irtf-pearg-numeric-ids-generation-06, 13 January
              2021, <https://tools.ietf.org/html/draft-irtf-pearg-
              numeric-ids-generation-06>.

   [RFC2474]  Nichols, K., Blake, S., Baker, F., and D. Black,
              "Definition of the Differentiated Services Field (DS
              Field) in the IPv4 and IPv6 Headers", RFC 2474,
              DOI 10.17487/RFC2474, December 1998,
              <https://www.rfc-editor.org/info/rfc2474>.

   [RFC4868]  Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-
              384, and HMAC-SHA-512 with IPsec", RFC 4868,
              DOI 10.17487/RFC4868, May 2007,
              <https://www.rfc-editor.org/info/rfc4868>.

   [RFC5357]  Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.
              Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",
              RFC 5357, DOI 10.17487/RFC5357, October 2008,
              <https://www.rfc-editor.org/info/rfc5357>.

   [RFC5905]  Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
              "Network Time Protocol Version 4: Protocol and Algorithms
              Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
              <https://www.rfc-editor.org/info/rfc5905>.

   [TS23501]  3GPP, "Technical Specification Group Services and System
              Aspects; System Architecture for the 5G System (5GS);
              Stage 2 (Release 16)", 3GPP TS 23.501, 2019.

Acknowledgments

   The authors very much appreciate the thorough review and thoughtful
   comments received from Tianran Zhou, Rakesh Gandhi, Yuezhong Song,
   and Yali Wang.  The authors express their gratitude to Al Morton for
   his comments and valuable suggestions.  The authors greatly
   appreciate the comments and thoughtful suggestions received from
   Martin Duke.

Contributors

   The following individual contributed text to this document:

   Guo Jun
   ZTE Corporation
   68# Zijinghua Road
   Nanjing
   Jiangsu, 210012
   China

   Phone: +86 18105183663
   Email: guo.jun2@zte.com.cn


Authors' Addresses



   Greg Mirsky
   ZTE Corp.

   Email: gregimirsky@gmail.com


   Xiao Min
   ZTE Corp.

   Email: xiao.min2@zte.com.cn


   Henrik Nydell
   Accedian Networks

   Email: hnydell@accedian.com


   Richard Foote
   Nokia

   Email: footer.foote@nokia.com


   Adi Masputra
   Apple Inc.
   One Apple Park Way
   Cupertino, CA 95014
   United States of America

   Email: adi@apple.com


   Ernesto Ruffini
   OutSys
   via Caracciolo, 65
   20155 Milan
   Italy

   Email: eruffini@outsys.org