RFC 9348




Internet Engineering Task Force (IETF)                          D. Fedyk
Request for Comments: 9348                                      C. Hopps
Category: Standards Track                        LabN Consulting, L.L.C.
ISSN: 2070-1721                                             January 2023


             A YANG Data Model for IP Traffic Flow Security

Abstract



   This document describes a YANG module for the management of IP
   Traffic Flow Security (IP-TFS) additions to Internet Key Exchange
   Protocol version 2 (IKEv2) and IPsec.

Status of This Memo



   This is an Internet Standards Track document.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Further information on
   Internet Standards is available in Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc9348.

Copyright Notice



   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Revised BSD License text as described in Section 4.e of the
   Trust Legal Provisions and are provided without warranty as described
   in the Revised BSD License.

Table of Contents



   1.  Introduction
   2.  Overview
   3.  YANG Management
     3.1.  YANG Tree
     3.2.  YANG Module
   4.  IANA Considerations
     4.1.  Updates to the IETF XML Registry
     4.2.  Updates to the YANG Module Names Registry
   5.  Security Considerations
   6.  References
     6.1.  Normative References
     6.2.  Informative References
   Appendix A.  Examples
     A.1.  Example XML Configuration
     A.2.  Example XML Operational Data
     A.3.  Example JSON Configuration
     A.4.  Example JSON Operational Data
     A.5.  Example JSON Operational Statistics
   Acknowledgements

   Authors' Addresses



1.  Introduction



   This document defines a YANG module [RFC7950] for the management of
   the IP Traffic Flow Security (IP-TFS) extensions defined in
   [RFC9347].  IP-TFS provides enhancements to an IPsec tunnel Security
   Association (SA) to provide improved traffic confidentiality.
   Traffic confidentiality reduces the ability of traffic analysis to
   determine identity and correlate observable traffic patterns.  IP-TFS
   offers efficiency when aggregating traffic in fixed-size IPsec tunnel
   packets.

   The YANG data model in this document conforms to the Network
   Management Datastore Architecture (NMDA) defined in [RFC8342].

   The published YANG modules for IPsec are defined in [RFC9061].  This
   document uses these models as a general IPsec model that is augmented
   for IP-TFS.  The models in [RFC9061] provide for both an IKE and an
   IKE-less model.

2.  Overview



   This document defines configuration and operational parameters of IP
   Traffic Flow Security (IP-TFS).  IP-TFS, defined in [RFC9347],
   defines a security association for tunnel mode IPsec with
   characteristics that improve traffic confidentiality and reduce
   bandwidth efficiency loss.  These documents assume familiarity with
   the IPsec concepts described in [RFC4301].

   IP-TFS uses tunnel mode to improve confidentiality by hiding inner
   packet identifiable information, packet size, and packet timing.  IP-
   TFS provides a general capability allowing aggregation of multiple
   packets in uniform-size outer tunnel IPsec packets.  It maintains the
   outer packet size by utilizing combinations of aggregating, padding,
   and fragmenting inner packets to fill out the IPsec outer tunnel
   packet.  Padding is used to fill the packet when no data is available
   to send.

   This document specifies an extensible configuration model for IP-TFS.
   This version utilizes the capabilities of IP-TFS to configure fixed-
   size IP-TFS packets that are transmitted at a constant rate.  This
   model is structured to allow for different types of operation through
   future augmentation.

   The IP-TFS YANG module augments the IPsec YANG module from [RFC9061].
   IP-TFS makes use of IPsec tunnel mode and adds a small number of
   configuration items to IPsec tunnel mode.  As defined in [RFC9347],
   any SA configured to use IP-TFS supports only IP-TFS packets, i.e.,
   no mixed IPsec modes.

   The behavior for IP-TFS is controlled by the source.  The self-
   describing format of an IP-TFS packet allows a sending side to adjust
   the packet size and timing independently from any receiver.  Both
   directions are also independent, e.g., IP-TFS may be run only in one
   direction.  This means that counters, which are created here for both
   directions, may be 0 or not updated in the case of an SA that uses
   IP-TFS only in on direction.

   Cases where IP-TFS statistics are active for one direction:

   *  SA one direction - IP-TFS enabled

   *  SA both directions - IP-TFS only enabled in one direction

   Case where IP-TFS statistics are active for both directions:

   *  SA both directions - IP-TFS enable for both directions

   The IP-TFS model supports IP-TFS configuration and operational data.

   This YANG module supports configuration of fixed-size and fixed-rate
   packets, as well as elements that may be augmented to support future
   configuration.  The protocol specification [RFC9347] goes beyond this
   simple, fixed mode of operation by defining a general format for any
   type of scheme.  In this document, the outer IPsec packets can be
   sent with fixed or variable size (without padding).  The
   configuration allows the fixed packet size to be determined by the
   path MTU.  The fixed packet size can also be configured if a value
   lower than the path MTU is desired.

   Other configuration items include:

   Congestion Control:
      A congestion control setting to allow IP-TFS to reduce the packet
      rate when congestion is detected.

   Fixed-Rate Configuration:
      The IP-TFS tunnel rate can be configured by taking into account
      either layer 2 overhead or layer 3 overhead.  Layer 3 overhead is
      the IP data rate, and layer 2 overhead is the rate of bits on the
      link.  The combination of packet size and rate determines the
      nominal maximum bandwidth and the transmission interval when
      fixed-size packets are used.

   User Packet Fragmentation Control:
      While fragmentation is recommended for improved efficiency, a
      configuration is provided if users wish to observe the effect of
      no fragmentation on their data flows.

   The YANG operational data allows the readout of the configured
   parameters, as well as the per-SA statistics and error counters for
   IP-TFS.  Per-SA IPsec packet statistics are provided as a feature,
   and per-SA IP-TFS-specific statistics are provided as another
   feature.  Both sets of statistics augment the IPsec YANG modules with
   counters that allow observation of IP-TFS packet efficiency.

   IPsec YANG management objects are set in [RFC9061].  IP-TFS YANG
   augments the IKE and the IKE-less models.  In these models, the
   Security Policy database entry and Security Association entry for an
   IPsec tunnel can be augmented with IP-TFS.  In addition, this model
   uses YANG types defined in [RFC6991].

3.  YANG Management



3.1.  YANG Tree



   The following is the YANG tree diagram [RFC8340] for the IP-TFS
   extensions.

   module: ietf-ipsec-iptfs
     augment /nsfike:ipsec-ike/nsfike:conn-entry/nsfike:spd
               /nsfike:spd-entry/nsfike:ipsec-policy-config
               /nsfike:processing-info/nsfike:ipsec-sa-cfg:
       +--rw traffic-flow-security
          +--rw congestion-control?           boolean
          +--rw packet-size
          |  +--rw use-path-mtu-discovery?   boolean
          |  +--rw outer-packet-size?        uint16
          +--rw (tunnel-rate)?
          |  +--:(l2-fixed-rate)
          |  |  +--rw l2-fixed-rate?          yang:gauge64
          |  +--:(l3-fixed-rate)
          |     +--rw l3-fixed-rate?          yang:gauge64
          +--rw dont-fragment?                boolean
          +--rw max-aggregation-time?         decimal64
          +--rw window-size?                  uint16
          +--rw send-immediately?             boolean
          +--rw lost-packet-timer-interval?   decimal64
     augment /nsfike:ipsec-ike/nsfike:conn-entry/nsfike:child-sa-info:
       +--ro traffic-flow-security
          +--ro congestion-control?           boolean
          +--ro packet-size
          |  +--ro use-path-mtu-discovery?   boolean
          |  +--ro outer-packet-size?        uint16
          +--ro (tunnel-rate)?
          |  +--:(l2-fixed-rate)
          |  |  +--ro l2-fixed-rate?          yang:gauge64
          |  +--:(l3-fixed-rate)
          |     +--ro l3-fixed-rate?          yang:gauge64
          +--ro dont-fragment?                boolean
          +--ro max-aggregation-time?         decimal64
          +--ro window-size?                  uint16
          +--ro send-immediately?             boolean
          +--ro lost-packet-timer-interval?   decimal64
     augment /nsfikels:ipsec-ikeless/nsfikels:spd/nsfikels:spd-entry
               /nsfikels:ipsec-policy-config/nsfikels:processing-info
               /nsfikels:ipsec-sa-cfg:
       +--rw traffic-flow-security
          +--rw congestion-control?           boolean
          +--rw packet-size
          |  +--rw use-path-mtu-discovery?   boolean
          |  +--rw outer-packet-size?        uint16
          +--rw (tunnel-rate)?
          |  +--:(l2-fixed-rate)
          |  |  +--rw l2-fixed-rate?          yang:gauge64
          |  +--:(l3-fixed-rate)
          |     +--rw l3-fixed-rate?          yang:gauge64
          +--rw dont-fragment?                boolean
          +--rw max-aggregation-time?         decimal64
          +--rw window-size?                  uint16
          +--rw send-immediately?             boolean
          +--rw lost-packet-timer-interval?   decimal64
     augment /nsfikels:ipsec-ikeless/nsfikels:sad/nsfikels:sad-entry:
       +--ro traffic-flow-security
          +--ro congestion-control?           boolean
          +--ro packet-size
          |  +--ro use-path-mtu-discovery?   boolean
          |  +--ro outer-packet-size?        uint16
          +--ro (tunnel-rate)?
          |  +--:(l2-fixed-rate)
          |  |  +--ro l2-fixed-rate?          yang:gauge64
          |  +--:(l3-fixed-rate)
          |     +--ro l3-fixed-rate?          yang:gauge64
          +--ro dont-fragment?                boolean
          +--ro max-aggregation-time?         decimal64
          +--ro window-size?                  uint16
          +--ro send-immediately?             boolean
          +--ro lost-packet-timer-interval?   decimal64
     augment /nsfike:ipsec-ike/nsfike:conn-entry/nsfike:child-sa-info:
       +--ro ipsec-stats {ipsec-stats}?
       |  +--ro tx-pkts?        yang:counter64
       |  +--ro tx-octets?      yang:counter64
       |  +--ro tx-drop-pkts?   yang:counter64
       |  +--ro rx-pkts?        yang:counter64
       |  +--ro rx-octets?      yang:counter64
       |  +--ro rx-drop-pkts?   yang:counter64
       +--ro iptfs-inner-pkt-stats {iptfs-stats}?
       |  +--ro tx-pkts?              yang:counter64
       |  +--ro tx-octets?            yang:counter64
       |  +--ro rx-pkts?              yang:counter64
       |  +--ro rx-octets?            yang:counter64
       |  +--ro rx-incomplete-pkts?   yang:counter64
       +--ro iptfs-outer-pkt-stats {iptfs-stats}?
          +--ro tx-all-pad-pkts?       yang:counter64
          +--ro tx-all-pad-octets?     yang:counter64
          +--ro tx-extra-pad-pkts?     yang:counter64
          +--ro tx-extra-pad-octets?   yang:counter64
          +--ro rx-all-pad-pkts?       yang:counter64
          +--ro rx-all-pad-octets?     yang:counter64
          +--ro rx-extra-pad-pkts?     yang:counter64
          +--ro rx-extra-pad-octets?   yang:counter64
          +--ro rx-errored-pkts?       yang:counter64
          +--ro rx-missed-pkts?        yang:counter64
     augment /nsfikels:ipsec-ikeless/nsfikels:sad/nsfikels:sad-entry:
       +--ro ipsec-stats {ipsec-stats}?
       |  +--ro tx-pkts?        yang:counter64
       |  +--ro tx-octets?      yang:counter64
       |  +--ro tx-drop-pkts?   yang:counter64
       |  +--ro rx-pkts?        yang:counter64
       |  +--ro rx-octets?      yang:counter64
       |  +--ro rx-drop-pkts?   yang:counter64
       +--ro iptfs-inner-pkt-stats {iptfs-stats}?
       |  +--ro tx-pkts?              yang:counter64
       |  +--ro tx-octets?            yang:counter64
       |  +--ro rx-pkts?              yang:counter64
       |  +--ro rx-octets?            yang:counter64
       |  +--ro rx-incomplete-pkts?   yang:counter64
       +--ro iptfs-outer-pkt-stats {iptfs-stats}?
          +--ro tx-all-pad-pkts?       yang:counter64
          +--ro tx-all-pad-octets?     yang:counter64
          +--ro tx-extra-pad-pkts?     yang:counter64
          +--ro tx-extra-pad-octets?   yang:counter64
          +--ro rx-all-pad-pkts?       yang:counter64
          +--ro rx-all-pad-octets?     yang:counter64
          +--ro rx-extra-pad-pkts?     yang:counter64
          +--ro rx-extra-pad-octets?   yang:counter64
          +--ro rx-errored-pkts?       yang:counter64
          +--ro rx-missed-pkts?        yang:counter64

3.2.  YANG Module



   The following is the YANG module for managing the IP-TFS extensions.
   The model contains references to [RFC9347] and [RFC5348].

   <CODE BEGINS> file "ietf-ipsec-iptfs@2023-01-31.yang"
   module ietf-ipsec-iptfs {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs";
     prefix iptfs;

     import ietf-i2nsf-ike {
       prefix nsfike;
       reference
         "RFC 9061: A YANG Data Model for IPsec Flow Protection Based on
          Software-Defined Networking (SDN), Section 5.2";
     }
     import ietf-i2nsf-ikeless {
       prefix nsfikels;
       reference
         "RFC 9061: A YANG Data Model for IPsec Flow Protection Based on
          Software-Defined Networking (SDN), Section 5.3";
     }
     import ietf-yang-types {
       prefix yang;
       reference
         "RFC 6991: Common YANG Data Types";
     }

     organization
       "IETF IPSECME Working Group (IPSECME)";
     contact
       "WG Web:  <https://datatracker.ietf.org/wg/ipsecme/>
        WG List: <mailto:ipsecme@ietf.org>

        Author: Don Fedyk
                <mailto:dfedyk@labn.net>

        Author: Christian Hopps
                <mailto:chopps@chopps.org>";

     description
       "This module defines the configuration and operational state for
        managing the IP Traffic Flow Security functionality (RFC 9348).

        Copyright (c) 2023 IETF Trust and the persons identified as
        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Revised BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (https://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC 9348; see
        the RFC itself for full legal notices.";

     revision 2023-01-31 {
       description
         "Initial revision";
       reference
         "RFC 9348: A YANG Data Model for IP Traffic Flow Security";
     }

     feature ipsec-stats {
       description
         "This feature indicates the device supports
          per-SA IPsec statistics.";
     }

     feature iptfs-stats {
       description
         "This feature indicates the device supports
          per-SA IP Traffic Flow Security statistics.";
     }

     /*--------------------*/
     /*   groupings        */
     /*--------------------*/

     grouping ipsec-tx-stat-grouping {
       description
         "IPsec outbound statistics";
       leaf tx-pkts {
         type yang:counter64;
         config false;
         description
           "Outbound Packet count";
       }
       leaf tx-octets {
         type yang:counter64;
         config false;
         description
           "Outbound Packet bytes";
       }
       leaf tx-drop-pkts {
         type yang:counter64;
         config false;
         description
           "Outbound dropped packets count";
       }
     }

     grouping ipsec-rx-stat-grouping {
       description
         "IPsec inbound statistics";
       leaf rx-pkts {
         type yang:counter64;
         config false;
         description
           "Inbound Packet count";
       }
       leaf rx-octets {
         type yang:counter64;
         config false;
         description
           "Inbound Packet bytes";
       }
       leaf rx-drop-pkts {
         type yang:counter64;
         config false;
         description
           "Inbound dropped packets count";
       }
     }

     grouping iptfs-inner-tx-stat-grouping {
       description
         "IP-TFS outbound inner packet statistics";
       leaf tx-pkts {
         type yang:counter64;
         config false;
         description
           "Total number of IP-TFS inner packets sent.  This
            count is whole packets only.  A fragmented packet
            counts as one packet.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS)";
       }
       leaf tx-octets {
         type yang:counter64;
         config false;
         description
           "Total number of IP-TFS inner octets sent.  This is
            inner packet octets only. It does not count padding.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS)";
       }
     }

     grouping iptfs-outer-tx-stat-grouping {
       description
         "IP-TFS outbound inner packet statistics";
       leaf tx-all-pad-pkts {
         type yang:counter64;
         config false;
         description
           "Total number of transmitted IP-TFS packets that
            were all padding with no inner packet data.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2.3";
       }
       leaf tx-all-pad-octets {
         type yang:counter64;
         config false;
         description
           "Total number transmitted octets of padding added to
            IP-TFS packets with no inner packet data.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2.3";
       }
       leaf tx-extra-pad-pkts {
         type yang:counter64;
         config false;
         description
           "Total number of transmitted outer IP-TFS packets
            that included some padding.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2.3.1";
       }
       leaf tx-extra-pad-octets {
         type yang:counter64;
         config false;
         description
           "Total number of transmitted octets of padding added
            to outer IP-TFS packets with data.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2.3.1";
       }
     }

     grouping iptfs-inner-rx-stat-grouping {
       description
         "IP-TFS inner packet inbound statistics";
       leaf rx-pkts {
         type yang:counter64;
         config false;
         description
           "Total number of IP-TFS inner packets received.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2";
       }
       leaf rx-octets {
         type yang:counter64;
         config false;
         description
           "Total number of IP-TFS inner octets received.  It does
            not include padding or overhead.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2";
       }
       leaf rx-incomplete-pkts {
         type yang:counter64;
         config false;
         description
           "Total number of IP-TFS inner packets that were
            incomplete.  Usually this is due to fragments that are
            not received.  Also, this may be due to misordering or
            errors in received outer packets.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS)";
       }
     }

     grouping iptfs-outer-rx-stat-grouping {
       description
         "IP-TFS outer packet inbound statistics";
       leaf rx-all-pad-pkts {
         type yang:counter64;
         config false;
         description
           "Total number of received IP-TFS packets that were
            all padding with no inner packet data.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2.3";
       }
       leaf rx-all-pad-octets {
         type yang:counter64;
         config false;
         description
           "Total number of received octets of padding added to
            IP-TFS packets with no inner packet data.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2.3";
       }
       leaf rx-extra-pad-pkts {
         type yang:counter64;
         config false;
         description
           "Total number of received outer IP-TFS packets that
            included some padding.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2.3.1";
       }
       leaf rx-extra-pad-octets {
         type yang:counter64;
         config false;
         description
           "Total number of received octets of padding added to
            outer IP-TFS packets with data.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS), Section 2.2.3.1";
       }
       leaf rx-errored-pkts {
         type yang:counter64;
         config false;
         description
           "Total number of IP-TFS outer packets dropped due to
            errors.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS)";
       }
       leaf rx-missed-pkts {
         type yang:counter64;
         config false;
         description
           "Total number of IP-TFS outer packets missing,
            indicated by a missing sequence number.";
         reference
           "RFC 9347: Aggregation and Fragmentation Mode for
            Encapsulating Security Payload (ESP) and Its Use for
            IP Traffic Flow Security (IP-TFS)";
       }
     }

     grouping iptfs-config {
       description
         "This is the grouping for IP-TFS configuration.";
       container traffic-flow-security {
         description
           "Configure the IPsec TFS in the Security
            Association Database (SAD).";
         leaf congestion-control {
           type boolean;
           default "true";
           description
             "When set to true, the default, this enables the
              congestion control on-the-wire exchange of data that is
              required by congestion control algorithms, as defined by
              RFC 5348.  When set to false, IP-TFS sends fixed-size
              packets over an IP-TFS tunnel at a constant rate.";
           reference
             "RFC 9347: Aggregation and Fragmentation Mode for
              Encapsulating Security Payload (ESP) and Its Use for
              IP Traffic Flow Security (IP-TFS), Section 2.4.2;
              RFC 5348: TCP Friendly Rate Control (TFRC): Protocol
              Specification";
         }
         container packet-size {
           description
             "Packet size is either auto-discovered or manually
              configured.";
           leaf use-path-mtu-discovery {
             type boolean;
             default "true";
             description
               "Utilize path MTU discovery to determine maximum
                IP-TFS packet size.  If the packet size is explicitly
                configured, then it will only be adjusted downward if
                use-path-mtu-discovery is set.";
             reference
               "RFC 9347: Aggregation and Fragmentation Mode for
                Encapsulating Security Payload (ESP) and Its Use for
                IP Traffic Flow Security (IP-TFS), Section 4.2";
           }
           leaf outer-packet-size {
             type uint16;
             units "bytes";
             description
               "On transmission, the size of the outer encapsulating
                tunnel packet (i.e., the IP packet containing
                Encapsulating Security Payload (ESP)).";
             reference
               "RFC 9347: Aggregation and Fragmentation Mode for
                Encapsulating Security Payload (ESP) and Its Use for
                IP Traffic Flow Security (IP-TFS), Section 4.2";
           }
         }
         choice tunnel-rate {
           description
             "The TFS bit rate may be specified at layer 2 wire
              rate or layer 3 packet rate.";
           leaf l2-fixed-rate {
             type yang:gauge64;
             units "bits/second";
             description
               "On transmission, target bandwidth/bit rate in
                bits/second for IP-TFS tunnel.  This fixed rate is the
                nominal timing for the fixed-size packet.  If
                congestion control is enabled, the rate may be
                adjusted down (or up if unset).";
             reference
               "RFC 9347: Aggregation and Fragmentation Mode for
                Encapsulating Security Payload (ESP) and Its Use for
                IP Traffic Flow Security (IP-TFS), Section 4.1";
           }
           leaf l3-fixed-rate {
             type yang:gauge64;
             units "bits/second";
             description
               "On transmission, target bandwidth/bit rate in
                bits/second for IP-TFS tunnel.  This fixed rate is the
                nominal timing for the fixed-size packet.  If
                congestion control is enabled, the rate may be
                adjusted down (or up if unset).";
             reference
               "RFC 9347: Aggregation and Fragmentation Mode for
                Encapsulating Security Payload (ESP) and Its Use for
                IP Traffic Flow Security (IP-TFS), Section 4.1";
           }
         }
         leaf dont-fragment {
           type boolean;
           default "false";
           description
             "On transmission, disable packet fragmentation across
              consecutive IP-TFS tunnel packets; inner packets larger
              than what can be transmitted in outer packets will be
              dropped.";
           reference
             "RFC 9347: Aggregation and Fragmentation Mode for
              Encapsulating Security Payload (ESP) and Its Use for
              IP Traffic Flow Security (IP-TFS), Section 2.2.4 and
              6.1.4";
         }
         leaf max-aggregation-time {
           type decimal64 {
             fraction-digits 6;
           }
           units "milliseconds";
           description
             "On transmission, maximum aggregation time is the
              maximum length of time a received inner packet can be
              held prior to transmission in the IP-TFS tunnel.  Inner
              packets that would be held longer than this time, based
              on the current tunnel configuration, will be dropped
              rather than be queued for transmission.  Maximum
              aggregation time is configurable in milliseconds or
              fractional milliseconds down to 1 nanosecond.";
         }
         leaf window-size {
           type uint16 {
             range "0..65535";
           }
           description
             "On reception, the maximum number of out-of-order
              packets that will be reordered by an IP-TFS receiver
              while performing the reordering operation.  The value 0
              disables any reordering.";
           reference
             "RFC 9347: Aggregation and Fragmentation Mode for
              Encapsulating Security Payload (ESP) and Its Use for
              IP Traffic Flow Security (IP-TFS), Section 2.2.3";
         }
         leaf send-immediately {
           type boolean;
           default "false";
           description
             "On reception, send inner packets as soon as possible; do
              not wait for lost or misordered outer packets.
              Selecting this option reduces the inner (user) packet
              delay but can amplify out-of-order delivery of the
              inner packet stream in the presence of packet
              aggregation and any reordering.";
           reference
             "RFC 9347: Aggregation and Fragmentation Mode for
              Encapsulating Security Payload (ESP) and Its Use for
              IP Traffic Flow Security (IP-TFS), Section 2.5";
         }
         leaf lost-packet-timer-interval {
           type decimal64 {
             fraction-digits 6;
           }
           units "milliseconds";
           description
             "On reception, this interval defines the length of time
              an IP-TFS receiver will wait for a missing packet before
              considering it lost.  If not using send-immediately,
              then each lost packet will delay inner (user) packets
              until this timer expires.  Setting this value too low
              can impact reordering and reassembly.  The value is
              configurable in milliseconds or fractional milliseconds
              down to 1 nanosecond.";
           reference
             "RFC 9347: Aggregation and Fragmentation Mode for
              Encapsulating Security Payload (ESP) and Its Use for
              IP Traffic Flow Security (IP-TFS), Section 2.2.3";
         }
       }
     }

     /*
      * IP-TFS ike configuration
      */

     augment "/nsfike:ipsec-ike/nsfike:conn-entry/nsfike:spd/"
           + "nsfike:spd-entry/"
           + "nsfike:ipsec-policy-config/"
           + "nsfike:processing-info/"
           + "nsfike:ipsec-sa-cfg" {
       description
         "IP-TFS configuration for this policy.";
       uses iptfs-config;
     }

     augment "/nsfike:ipsec-ike/nsfike:conn-entry/"
           + "nsfike:child-sa-info" {
       description
         "IP-TFS configured on this SA.";
       uses iptfs-config {
         refine "traffic-flow-security" {
           config false;
         }
       }
     }

     /*
      * IP-TFS ikeless configuration
      */

     augment "/nsfikels:ipsec-ikeless/nsfikels:spd/"
           + "nsfikels:spd-entry/"
           + "nsfikels:ipsec-policy-config/"
           + "nsfikels:processing-info/"
           + "nsfikels:ipsec-sa-cfg" {
       description
         "IP-TFS configuration for this policy.";
       uses iptfs-config;
     }

     augment "/nsfikels:ipsec-ikeless/nsfikels:sad/"
           + "nsfikels:sad-entry" {
       description
         "IP-TFS configured on this SA.";
       uses iptfs-config {
         refine "traffic-flow-security" {
           config false;
         }
       }
     }

     /*
      * packet counters
      */

     augment "/nsfike:ipsec-ike/nsfike:conn-entry/"
           + "nsfike:child-sa-info" {
       description
         "Per-SA counters";
       container ipsec-stats {
         if-feature "ipsec-stats";
         config false;
         description
           "IPsec per-SA packet counters.
            tx = outbound, rx = inbound";
         uses ipsec-tx-stat-grouping;
         uses ipsec-rx-stat-grouping;
       }
       container iptfs-inner-pkt-stats {
         if-feature "iptfs-stats";
         config false;
         description
           "IP-TFS per-SA inner packet counters.
            tx = outbound, rx = inbound";
         uses iptfs-inner-tx-stat-grouping;
         uses iptfs-inner-rx-stat-grouping;
       }
       container iptfs-outer-pkt-stats {
         if-feature "iptfs-stats";
         config false;
         description
           "IP-TFS per-SA outer packets counters.
            tx = outbound, rx = inbound";
         uses iptfs-outer-tx-stat-grouping;
         uses iptfs-outer-rx-stat-grouping;
       }
     }

     /*
      * packet counters
      */

     augment "/nsfikels:ipsec-ikeless/nsfikels:sad/"
           + "nsfikels:sad-entry" {
       description
         "Per-SA counters";
       container ipsec-stats {
         if-feature "ipsec-stats";
         config false;
         description
           "IPsec per-SA packet counters.
            tx = outbound, rx = inbound";
         uses ipsec-tx-stat-grouping;
         uses ipsec-rx-stat-grouping;
       }
       container iptfs-inner-pkt-stats {
         if-feature "iptfs-stats";
         config false;
         description
           "IP-TFS per-SA inner packet counters.
            tx = outbound, rx = inbound";
         uses iptfs-inner-tx-stat-grouping;
         uses iptfs-inner-rx-stat-grouping;
       }
       container iptfs-outer-pkt-stats {
         if-feature "iptfs-stats";
         config false;
         description
           "IP-TFS per-SA outer packets counters.
            tx = outbound, rx = inbound";
         uses iptfs-outer-tx-stat-grouping;
         uses iptfs-outer-rx-stat-grouping;
       }
     }
   }
   <CODE ENDS>

4.  IANA Considerations



4.1.  Updates to the IETF XML Registry



   Per this document, IANA has registered a URI in the "IETF XML
   Registry" [RFC3688] as follows.

   URI:  urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs
   Registrant Contact:  The IESG.
   XML:  N/A; the requested URI is an XML namespace.

4.2.  Updates to the YANG Module Names Registry



   Per this document, IANA has registered one YANG module in the "YANG
   Module Names" registry [RFC6020] as follows.

   Name:  ietf-ipsec-iptfs
   Namespace:  urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs
   Prefix:  iptfs
   Reference:  RFC 9348

5.  Security Considerations



   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [RFC8446].

   The Network Configuration Access Control Model (NACM) [RFC8341]
   provides the means to restrict access for particular NETCONF or
   RESTCONF users to a preconfigured subset of all available NETCONF or
   RESTCONF protocol operations and content.

   There are a number of data nodes defined in this YANG module that are
   writable/creatable/deletable (i.e., config true, which is the
   default).  These data nodes may be considered sensitive or vulnerable
   in some network environments.  Write operations (e.g., edit-config)
   to these data nodes without proper protection can have a negative
   effect on network operations.  These are the subtrees and data nodes
   and their sensitivity/vulnerability:

   ../traffic-flow-security:  Enabling IP-TFS is controlled by setting
      the entries under traffic-flow-security in IKE or IKE-less models.
      IP-TFS is set either to be congestion sensitive or a fixed rate by
      setting parameters in this subtree.

   Some of the readable data nodes in this YANG module may be considered
   sensitive or vulnerable in some network environments.  It is thus
   important to control read access (e.g., via get, get-config, or
   notification) to these data nodes.  These are the subtrees and data
   nodes and their sensitivity/vulnerability:

   ../iptfs-inner-pkt-stats and ../iptfs-outer-pkt-stats:  Access to IP-
      TFS statistics can provide information that IP-TFS obscures, such
      as the true activity of the flows using IP-TFS.

6.  References



6.1.  Normative References



   [RFC4301]  Kent, S. and K. Seo, "Security Architecture for the
              Internet Protocol", RFC 4301, DOI 10.17487/RFC4301,
              December 2005, <https://www.rfc-editor.org/info/rfc4301>.

   [RFC6020]  Bjorklund, M., Ed., "YANG - A Data Modeling Language for
              the Network Configuration Protocol (NETCONF)", RFC 6020,
              DOI 10.17487/RFC6020, October 2010,
              <https://www.rfc-editor.org/info/rfc6020>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC6991]  Schoenwaelder, J., Ed., "Common YANG Data Types",
              RFC 6991, DOI 10.17487/RFC6991, July 2013,
              <https://www.rfc-editor.org/info/rfc6991>.

   [RFC7950]  Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
              RFC 7950, DOI 10.17487/RFC7950, August 2016,
              <https://www.rfc-editor.org/info/rfc7950>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and R. Wilton, "Network Management Datastore Architecture
              (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/info/rfc8342>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

   [RFC9061]  Marin-Lopez, R., Lopez-Millan, G., and F. Pereniguez-
              Garcia, "A YANG Data Model for IPsec Flow Protection Based
              on Software-Defined Networking (SDN)", RFC 9061,
              DOI 10.17487/RFC9061, July 2021,
              <https://www.rfc-editor.org/info/rfc9061>.

   [RFC9347]  Hopps, C., "Aggregation and Fragmentation Mode for
              Encapsulating Security Payload (ESP) and Its Use for IP
              Traffic Flow Security (IP-TFS)", RFC 9347,
              DOI 10.17487/RFC9347, January 2023,
              <https://www.rfc-editor.org/info/rfc9347>.

6.2.  Informative References



   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC5348]  Floyd, S., Handley, M., Padhye, J., and J. Widmer, "TCP
              Friendly Rate Control (TFRC): Protocol Specification",
              RFC 5348, DOI 10.17487/RFC5348, September 2008,
              <https://www.rfc-editor.org/info/rfc5348>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.

Appendix A.  Examples



   The following examples show configuration and operational data for
   the IKE-less and IKE cases using XML and JSON.  Also, the operational
   statistics for the IKE-less case is illustrated.

A.1.  Example XML Configuration



   This example illustrates configuration for IP-TFS in the IKE-less
   case.  Note that, since this augments the IPsec IKE-less schema, only
   a minimal IKE-less configuration to satisfy the schema has been
   populated.

   <i:ipsec-ikeless
     xmlns:i="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless"
     xmlns:tfs="urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs">
     <i:spd>
       <i:spd-entry>
         <i:name>protect-policy-1</i:name>
         <i:direction>outbound</i:direction>
         <i:ipsec-policy-config>
           <i:traffic-selector>
             <i:local-prefix>192.0.2.0/16</i:local-prefix>
             <i:remote-prefix>198.51.100.0/16</i:remote-prefix>
           </i:traffic-selector>
           <i:processing-info>
             <i:action>protect</i:action>
             <i:ipsec-sa-cfg>
               <tfs:traffic-flow-security>
                <tfs:congestion-control>true</tfs:congestion-control>
                 <tfs:packet-size>
                   <tfs:use-path-mtu-discovery
                      >true</tfs:use-path-mtu-discovery>
                 </tfs:packet-size>
                 <tfs:l2-fixed-rate>1000000000</tfs:l2-fixed-rate>
                 <tfs:max-aggregation-time
                    >0.1</tfs:max-aggregation-time>
                 <tfs:window-size>5</tfs:window-size>
                 <tfs:send-immediately>false</tfs:send-immediately>
                 <tfs:lost-packet-timer-interval
                    >0.2</tfs:lost-packet-timer-interval>
               </tfs:traffic-flow-security>
             </i:ipsec-sa-cfg>
           </i:processing-info>
         </i:ipsec-policy-config>
       </i:spd-entry>
     </i:spd>
   </i:ipsec-ikeless>

                 Figure 1: Example IP-TFS XML Configuration

A.2.  Example XML Operational Data



   This example illustrates operational data for IP-TFS in the IKE-less
   case.  Note that, since this augments the IPsec IKE-less schema only,
   a minimal IKE-less configuration to satisfy the schema has been
   populated.

   <i:ipsec-ikeless
     xmlns:i="urn:ietf:params:xml:ns:yang:ietf-i2nsf-ikeless"
     xmlns:tfs="urn:ietf:params:xml:ns:yang:ietf-ipsec-iptfs">
     <i:sad>
       <i:sad-entry>
         <i:name>sad-1</i:name>
         <i:ipsec-sa-config>
           <i:spi>1</i:spi>
           <i:traffic-selector>
             <i:local-prefix>2001:db8:1::/48</i:local-prefix>
             <i:remote-prefix>2001:db8:2::/48</i:remote-prefix>
           </i:traffic-selector>
         </i:ipsec-sa-config>
         <tfs:traffic-flow-security>
           <tfs:congestion-control>true</tfs:congestion-control>
           <tfs:packet-size>
             <tfs:use-path-mtu-discovery
               >true</tfs:use-path-mtu-discovery>
           </tfs:packet-size>
           <tfs:l2-fixed-rate>1000000000</tfs:l2-fixed-rate>
           <tfs:max-aggregation-time>0.100</tfs:max-aggregation-time>
           <tfs:window-size>0</tfs:window-size>
           <tfs:send-immediately>true</tfs:send-immediately>
           <tfs:lost-packet-timer-interval
             >0.200</tfs:lost-packet-timer-interval>
         </tfs:traffic-flow-security>
       </i:sad-entry>
     </i:sad>
   </i:ipsec-ikeless>

               Figure 2: Example IP-TFS XML Operational Data

A.3.  Example JSON Configuration



   This example illustrates configuration data for IP-TFS in the IKE
   case.  Note that, since this augments the IPsec IKE schema, only a
   minimal IKE configuration to satisfy the schema has been populated.

   {
     "ietf-i2nsf-ike:ipsec-ike": {
       "ietf-i2nsf-ike:conn-entry": [
         {
           "name": "my-peer-connection",
           "ike-sa-encr-alg": [
             {
               "id": 1,
               "algorithm-type": 12,
               "key-length": 128
             }
             ],
             "local": {
               "local-pad-entry-name": "local-1"
             },
             "remote": {
               "remote-pad-entry-name": "remote-1"
             },
             "ietf-i2nsf-ike:spd": {
             "spd-entry": [
               {
                 "name": "protect-policy-1",
                 "ipsec-policy-config": {
                   "traffic-selector": {
                     "local-prefix": "192.0.2.0/16",
                     "remote-prefix": "198.51.100.0/16"
                   },
                   "processing-info": {
                     "action": "protect",
                     "ipsec-sa-cfg": {
                       "ietf-ipsec-iptfs:traffic-flow-security": {
                         "congestion-control": true,
                         "l2-fixed-rate": "1000000000",
                         "packet-size": {
                           "use-path-mtu-discovery": true
                         },
                         "max-aggregation-time": "0.1",
                         "window-size": 1,
                         "send-immediately": false,
                         "lost-packet-timer-interval": "0.2"
                       }
                     }
                   }
                 }
               }
             ]
           }
         }
       ]
     }
   }

                Figure 3: Example IP-TFS JSON Configuration

A.4.  Example JSON Operational Data



   This example illustrates operational data for IP-TFS in the IKE case.
   Note that, since this augments the IPsec IKE tree, only a minimal IKE
   configuration to satisfy the schema has been populated.

   {
     "ietf-i2nsf-ike:ipsec-ike": {
       "ietf-i2nsf-ike:conn-entry": [
         {
           "name": "my-peer-connection",
           "ike-sa-encr-alg": [
           {
             "id": 1,
             "algorithm-type": 12,
             "key-length": 128
           }
           ],
           "local": {
             "local-pad-entry-name": "local-1"
           },
           "remote": {
             "remote-pad-entry-name": "remote-1"
           },
           "ietf-i2nsf-ike:child-sa-info": {
             "ietf-ipsec-iptfs:traffic-flow-security": {
               "congestion-control": true,
               "l2-fixed-rate": "1000000000",
               "packet-size": {
                 "use-path-mtu-discovery": true
               },
               "max-aggregation-time": "0.1",
               "window-size": 5,
               "send-immediately": false,
               "lost-packet-timer-interval": "0.2"
             }
           }
         }
       ]
     }
   }

               Figure 4: Example IP-TFS JSON Operational Data

A.5.  Example JSON Operational Statistics



   This example shows the JSON formatted statistics for IP-TFS.  Note a
   unidirectional IP-TFS transmit side is illustrated, with arbitrary
   numbers for transmit.

   {
     "ietf-i2nsf-ikeless:ipsec-ikeless": {
       "sad": {
         "sad-entry": [
           {
             "name": "sad-1",
             "ipsec-sa-config": {
               "spi": 1,
               "traffic-selector": {
                 "local-prefix": "192.0.2.1/16",
                 "remote-prefix": "198.51.100.0/16"
               }
             },
             "ietf-ipsec-iptfs:traffic-flow-security": {
               "window-size": 5,
               "send-immediately": false,
               "lost-packet-timer-interval": "0.2"
             },
             "ietf-ipsec-iptfs:ipsec-stats": {
               "tx-pkts": "300",
               "tx-octets": "80000",
               "tx-drop-pkts": "2",
               "rx-pkts": "0",
               "rx-octets": "0",
               "rx-drop-pkts": "0"
             },
             "ietf-ipsec-iptfs:iptfs-inner-pkt-stats": {
               "tx-pkts": "250",
               "tx-octets": "75000",
               "rx-pkts": "0",
               "rx-octets": "0",
               "rx-incomplete-pkts": "0"
             },
             "ietf-ipsec-iptfs:iptfs-outer-pkt-stats": {
               "tx-all-pad-pkts": "40",
               "tx-all-pad-octets": "40000",
               "tx-extra-pad-pkts": "200",
               "tx-extra-pad-octets": "30000",
               "rx-all-pad-pkts": "0",
               "rx-all-pad-octets": "0",
               "rx-extra-pad-pkts": "0",
               "rx-extra-pad-octets": "0",
               "rx-errored-pkts": "0",
               "rx-missed-pkts": "0"
             },
             "ipsec-sa-state": {
               "sa-lifetime-current": {
                 "time": 80000,
                 "bytes": "400606",
                 "packets": 1000,
                 "idle": 5
               }
             }
           }
         ]
       }
     }
   }

                  Figure 5: Example IP-TFS JSON Statistics

Acknowledgements



   The authors would like to thank Eric Kinzie, Jürgen Schönwälder, Lou
   Berger, and Tero Kivinen for their feedback and review on the YANG
   module.

Authors' Addresses



   Don Fedyk
   LabN Consulting, L.L.C.
   Email: dfedyk@labn.net


   Christian Hopps
   LabN Consulting, L.L.C.
   Email: chopps@chopps.org