RFC 8878




Internet Engineering Task Force (IETF)                         Y. Collet
Request for Comments: 8878                             M. Kucherawy, Ed.
Obsoletes: 8478                                                 Facebook
Category: Informational                                    February 2021
ISSN: 2070-1721


      Zstandard Compression and the 'application/zstd' Media Type

Abstract



   Zstandard, or "zstd" (pronounced "zee standard"), is a lossless data
   compression mechanism.  This document describes the mechanism and
   registers a media type, content encoding, and a structured syntax
   suffix to be used when transporting zstd-compressed content via MIME.

   Despite use of the word "standard" as part of Zstandard, readers are
   advised that this document is not an Internet Standards Track
   specification; it is being published for informational purposes only.

   This document replaces and obsoletes RFC 8478.

Status of This Memo



   This document is not an Internet Standards Track specification; it is
   published for informational purposes.

   This document is a product of the Internet Engineering Task Force
   (IETF).  It represents the consensus of the IETF community.  It has
   received public review and has been approved for publication by the
   Internet Engineering Steering Group (IESG).  Not all documents
   approved by the IESG are candidates for any level of Internet
   Standard; see Section 2 of RFC 7841.

   Information about the current status of this document, any errata,
   and how to provide feedback on it may be obtained at
   https://www.rfc-editor.org/info/rfc8878.

Copyright Notice



   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents



   1.  Introduction
   2.  Definitions
   3.  Compression Algorithm
     3.1.  Frames
       3.1.1.  Zstandard Frames
         3.1.1.1.  Frame Header
         3.1.1.2.  Blocks
         3.1.1.3.  Compressed Blocks
         3.1.1.4.  Sequence Execution
         3.1.1.5.  Repeat Offsets
       3.1.2.  Skippable Frames
   4.  Entropy Encoding
     4.1.  FSE
       4.1.1.  FSE Table Description
     4.2.  Huffman Coding
       4.2.1.  Huffman Tree Description
         4.2.1.1.  Huffman Tree Header
         4.2.1.2.  FSE Compression of Huffman Weights
         4.2.1.3.  Conversion from Weights to Huffman Prefix Codes
       4.2.2.  Huffman-Coded Streams
   5.  Dictionary Format
   6.  Use of Dictionaries
   7.  IANA Considerations
     7.1.  The 'application/zstd' Media Type
     7.2.  Content Encoding
     7.3.  Structured Syntax Suffix
     7.4.  Dictionaries
   8.  Security Considerations
   9.  References
     9.1.  Normative References
     9.2.  Informative References
   Appendix A.  Decoding Tables for Predefined Codes
     A.1.  Literals Length Code Table
     A.2.  Match Length Code Table
     A.3.  Offset Code Table
   Appendix B.  Changes since RFC 8478
   Acknowledgments

   Authors' Addresses



1.  Introduction



   Zstandard, or "zstd" (pronounced "zee standard"), is a data
   compression mechanism, akin to gzip [RFC1952].

   Despite use of the word "standard" as part of its name, readers are
   advised that this document is not an Internet Standards Track
   specification; it is being published for informational purposes only.

   This document describes the Zstandard format.  Also, to enable the
   transport of a data object compressed with Zstandard, this document
   registers a media type, content encoding, and structured syntax
   suffix that can be used to identify such content when it is used in a
   payload.

2.  Definitions



   Some terms used elsewhere in this document are defined here for
   clarity.

   uncompressed:  Describes an arbitrary set of bytes in their original
      form, prior to being subjected to compression.

   compressed:  Describes the result of passing a set of bytes through
      this mechanism.  The original input has thus been compressed.

   decompressed:  Describes the result of passing a set of bytes through
      the reverse of this mechanism.  When this is successful, the
      decompressed payload and the uncompressed payload are
      indistinguishable.

   encode:  The process of translating data from one form to another;
      this may include compression, or it may refer to other
      translations done as part of this specification.

   decode:  The reverse of "encode"; describes a process of reversing a
      prior encoding to recover the original content.

   frame:  Content compressed by Zstandard is transformed into a
      Zstandard frame.  Multiple frames can be appended into a single
      file or stream.  A frame is completely independent, has a defined
      beginning and end, and has a set of parameters that tells the
      decoder how to decompress it.

   block:  A frame encapsulates one or multiple blocks.  Each block
      contains arbitrary content, which is described by its header, and
      has a guaranteed maximum content size that depends upon frame
      parameters.  Unlike frames, each block depends on previous blocks
      for proper decoding.  However, each block can be decompressed
      without waiting for its successor, allowing streaming operations.

   natural order:  A sequence or ordering of objects or values that is
      typical of that type of object or value.  A set of unique
      integers, for example, is in "natural order" if, when progressing
      from one element in the set or sequence to the next, there is
      never a decrease in value.

   The naming convention for identifiers within the specification is
   Mixed_Case_With_Underscores.  Identifiers inside square brackets
   indicate that the identifier is optional in the presented context.

3.  Compression Algorithm



   This section describes the Zstandard algorithm.

   The purpose of this document is to define a lossless compressed data
   format that is a) independent of the CPU type, operating system, file
   system, and character set and b) suitable for file compression and
   pipe and streaming compression, using the Zstandard algorithm.  The
   text of the specification assumes a basic background in programming
   at the level of bits and other primitive data representations.

   The data can be produced or consumed, even for an arbitrarily long
   sequentially presented input data stream, using only an a priori
   bounded amount of intermediate storage; hence, it can be used in data
   communications.  The format uses the Zstandard compression method,
   and an optional xxHash-64 checksum method [XXHASH], for detection of
   data corruption.

   The data format defined by this specification does not attempt to
   allow random access to compressed data.

   Unless otherwise indicated below, a compliant compressor must produce
   data sets that conform to the specifications presented here.
   However, it does not need to support all options.

   A compliant decompressor must be able to decompress at least one
   working set of parameters that conforms to the specifications
   presented here.  It may also ignore informative fields, such as the
   checksum.  Whenever it does not support a parameter defined in the
   compressed stream, it must produce an unambiguous error code and
   associated error message explaining which parameter is unsupported.

   This specification is intended for use by implementers of software to
   compress data into Zstandard format and/or decompress data from
   Zstandard format.  The Zstandard format is supported by an open-
   source reference implementation, written in portable C, and available
   at [ZSTD].

3.1.  Frames



   Zstandard compressed data is made up of one or more frames.  Each
   frame is independent and can be decompressed independently of other
   frames.  The decompressed content of multiple concatenated frames is
   the concatenation of each frame's decompressed content.

   There are two frame formats defined for Zstandard: Zstandard frames
   and skippable frames.  Zstandard frames contain compressed data,
   while skippable frames contain custom user metadata.

3.1.1.  Zstandard Frames



   The structure of a single Zstandard frame is as follows:

                    +--------------------+------------+
                    | Magic_Number       | 4 bytes    |
                    +--------------------+------------+
                    | Frame_Header       | 2-14 bytes |
                    +--------------------+------------+
                    | Data_Block         | n bytes    |
                    +--------------------+------------+
                    | [More Data_Blocks] |            |
                    +--------------------+------------+
                    | [Content_Checksum] | 4 bytes    |
                    +--------------------+------------+

                        Table 1: The Structure of a
                           Single Zstandard Frame

   Magic_Number:  4 bytes, little-endian format.  Value: 0xFD2FB528.

   Frame_Header:  2 to 14 bytes, detailed in Section 3.1.1.1.

   Data_Block:  Detailed in Section 3.1.1.2.  This is where data
      appears.

   Content_Checksum:  An optional 32-bit checksum, only present if
      Content_Checksum_Flag is set.  The content checksum is the result
      of the XXH64() hash function [XXHASH] digesting the original
      (decoded) data as input, and a seed of zero.  The low 4 bytes of
      the checksum are stored in little-endian format.

   The magic number was selected to be less probable to find at the
   beginning of an arbitrary file.  It avoids trivial patterns (0x00,
   0xFF, repeated bytes, increasing bytes, etc.), contains byte values
   outside of the ASCII range, and doesn't map into UTF-8 space, all of
   which reduce the likelihood of its appearance at the top of a text
   file.

3.1.1.1.  Frame Header



   The frame header has a variable size, with a minimum of 2 bytes up to
   a maximum of 14 bytes depending on optional parameters.  The
   structure of Frame_Header is as follows:

                  +-------------------------+-----------+
                  | Frame_Header_Descriptor | 1 byte    |
                  +-------------------------+-----------+
                  | [Window_Descriptor]     | 0-1 byte  |
                  +-------------------------+-----------+
                  | [Dictionary_ID]         | 0-4 bytes |
                  +-------------------------+-----------+
                  | [Frame_Content_Size]    | 0-8 bytes |
                  +-------------------------+-----------+

                   Table 2: The Structure of Frame_Header

3.1.1.1.1.  Frame_Header_Descriptor


   The first header's byte is called the Frame_Header_Descriptor.  It
   describes which other fields are present.  Decoding this byte is
   enough to tell the size of Frame_Header.

                 +============+=========================+
                 | Bit Number | Field Name              |
                 +============+=========================+
                 | 7-6        | Frame_Content_Size_Flag |
                 +------------+-------------------------+
                 | 5          | Single_Segment_Flag     |
                 +------------+-------------------------+
                 | 4          | (unused)                |
                 +------------+-------------------------+
                 | 3          | (reserved)              |
                 +------------+-------------------------+
                 | 2          | Content_Checksum_Flag   |
                 +------------+-------------------------+
                 | 1-0        | Dictionary_ID_Flag      |
                 +------------+-------------------------+

                   Table 3: The Frame_Header_Descriptor

   In Table 3, bit 7 is the highest bit, while bit 0 is the lowest one.

3.1.1.1.1.1.  Frame_Content_Size_Flag


   This is a 2-bit flag (equivalent to Frame_Header_Descriptor right-
   shifted 6 bits) specifying whether Frame_Content_Size (the
   decompressed data size) is provided within the header.
   Frame_Content_Size_Flag provides FCS_Field_Size, which is the number
   of bytes used by Frame_Content_Size according to Table 4:

             +-------------------------+--------+---+---+---+
             | Frame_Content_Size_Flag |   0    | 1 | 2 | 3 |
             +-------------------------+--------+---+---+---+
             | FCS_Field_Size          | 0 or 1 | 2 | 4 | 8 |
             +-------------------------+--------+---+---+---+

                Table 4: Frame_Content_Size_Flag Provides
                              FCS_Field_Size

   When Frame_Content_Size_Flag is 0, FCS_Field_Size depends on
   Single_Segment_Flag: if Single_Segment_Flag is set, FCS_Field_Size is
   1.  Otherwise, FCS_Field_Size is 0; Frame_Content_Size is not
   provided.

3.1.1.1.1.2.  Single_Segment_Flag


   If this flag is set, data must be regenerated within a single
   continuous memory segment.

   In this case, Window_Descriptor byte is skipped, but
   Frame_Content_Size is necessarily present.  As a consequence, the
   decoder must allocate a memory segment of a size equal to or larger
   than Frame_Content_Size.

   In order to protect the decoder from unreasonable memory
   requirements, a decoder is allowed to reject a compressed frame that
   requests a memory size beyond the decoder's authorized range.

   For broader compatibility, decoders are recommended to support memory
   sizes of at least 8 MB.  This is only a recommendation; each decoder
   is free to support higher or lower limits, depending on local
   limitations.

3.1.1.1.1.3.  Unused Bit


   A decoder compliant with this specification version shall not
   interpret this bit.  It might be used in a future version to signal a
   property that is not mandatory to properly decode the frame.  An
   encoder compliant with this specification must set this bit to zero.

3.1.1.1.1.4.  Reserved Bit


   This bit is reserved for some future feature.  Its value must be
   zero.  A decoder compliant with this specification version must
   ensure it is not set.  This bit may be used in a future revision to
   signal a feature that must be interpreted to decode the frame
   correctly.

3.1.1.1.1.5.  Content_Checksum_Flag


   If this flag is set, a 32-bit Content_Checksum will be present at the
   frame's end.  See the description of Content_Checksum above.

3.1.1.1.1.6.  Dictionary_ID_Flag


   This is a 2-bit flag (= Frame_Header_Descriptor & 0x3) indicating
   whether a dictionary ID is provided within the header.  It also
   specifies the size of this field as DID_Field_Size:

                  +--------------------+---+---+---+---+
                  | Dictionary_ID_Flag | 0 | 1 | 2 | 3 |
                  +--------------------+---+---+---+---+
                  | DID_Field_Size     | 0 | 1 | 2 | 4 |
                  +--------------------+---+---+---+---+

                       Table 5: Dictionary_ID_Flag

3.1.1.1.2.  Window Descriptor


   This provides guarantees about the minimum memory buffer required to
   decompress a frame.  This information is important for decoders to
   allocate enough memory.

   The Window_Descriptor byte is optional.  When Single_Segment_Flag is
   set, Window_Descriptor is not present.  In this case, Window_Size is
   Frame_Content_Size, which can be any value from 0 to 2^(64) - 1 bytes
   (16 ExaBytes).

                   +------------+----------+----------+
                   | Bit Number |   7-3    |   2-0    |
                   +------------+----------+----------+
                   | Field Name | Exponent | Mantissa |
                   +------------+----------+----------+

                        Table 6: Window_Descriptor

   The minimum memory buffer size is called Window_Size.  It is
   described by the following formulas:

     windowLog = 10 + Exponent;
     windowBase = 1 << windowLog;
     windowAdd = (windowBase / 8) * Mantissa;
     Window_Size = windowBase + windowAdd;

   The minimum Window_Size is 1 KB.  The maximum Window_Size is (1<<41)
   + 7*(1<<38) bytes, which is 3.75 TB.

   In general, larger Window_Size values tend to improve the compression
   ratio, but at the cost of increased memory usage.

   To properly decode compressed data, a decoder will need to allocate a
   buffer of at least Window_Size bytes.

   In order to protect decoders from unreasonable memory requirements, a
   decoder is allowed to reject a compressed frame that requests a
   memory size beyond the decoder's authorized range.

   For improved interoperability, it's recommended for decoders to
   support values of Window_Size up to 8 MB and for encoders not to
   generate frames requiring a Window_Size larger than 8 MB.  It's
   merely a recommendation though, and decoders are free to support
   higher or lower limits, depending on local limitations.

3.1.1.1.3.  Dictionary_ID


   This is a field of variable size, which contains the ID of the
   dictionary required to properly decode the frame.  This field is
   optional.  When it's not present, it's up to the decoder to know
   which dictionary to use.

   Dictionary_ID field size is provided by DID_Field_Size.
   DID_Field_Size is directly derived from the value of
   Dictionary_ID_Flag.  One byte can represent an ID 0-255; 2 bytes can
   represent an ID 0-65535; 4 bytes can represent an ID 0-4294967295.
   Format is little-endian.

   It is permitted to represent a small ID (for example, 13) with a
   large 4-byte dictionary ID, even if it is less efficient.

   Within private environments, any dictionary ID can be used.  However,
   for frames and dictionaries distributed in public space,
   Dictionary_ID must be attributed carefully.  The following ranges are
   reserved for use only with dictionaries that have been registered
   with IANA (see Section 7.4):

   low range:  <= 32767

   high range:  >= (1 << 31)

   Any other value for Dictionary_ID can be used by private arrangement
   between participants.

   Any payload presented for decompression that references an
   unregistered reserved dictionary ID results in an error.

3.1.1.1.4.  Frame_Content_Size


   This is the original (uncompressed) size.  This information is
   optional.  Frame_Content_Size uses a variable number of bytes,
   provided by FCS_Field_Size.  FCS_Field_Size is provided by the value
   of Frame_Content_Size_Flag.  FCS_Field_Size can be equal to 0 (not
   present), 1, 2, 4, or 8 bytes.

                    +================+================+
                    | FCS Field Size | Range          |
                    +================+================+
                    |       0        | unknown        |
                    +----------------+----------------+
                    |       1        | 0 - 255        |
                    +----------------+----------------+
                    |       2        | 256 - 65791    |
                    +----------------+----------------+
                    |       4        | 0 - 2^(32) - 1 |
                    +----------------+----------------+
                    |       8        | 0 - 2^(64) - 1 |
                    +----------------+----------------+

                        Table 7: Frame_Content_Size

   Frame_Content_Size format is little-endian.  When FCS_Field_Size is
   1, 4, or 8 bytes, the value is read directly.  When FCS_Field_Size is
   2, the offset of 256 is added.  It's allowed to represent a small
   size (for example, 18) using any compatible variant.

3.1.1.2.  Blocks



   After Magic_Number and Frame_Header, there are some number of blocks.
   Each frame must have at least 1 block, but there is no upper limit on
   the number of blocks per frame.

   The structure of a block is as follows:

                     +==============+===============+
                     | Block_Header | Block_Content |
                     +==============+===============+
                     |   3 bytes    |    n bytes    |
                     +--------------+---------------+

                       Table 8: The Structure of a
                                  Block

   Block_Header uses 3 bytes, written using little-endian convention.
   It contains three fields:

                 +============+============+============+
                 | Last_Block | Block_Type | Block_Size |
                 +============+============+============+
                 |   bit 0    |  bits 1-2  | bits 3-23  |
                 +------------+------------+------------+

                          Table 9: Block_Header

3.1.1.2.1.  Last_Block


   The lowest bit (Last_Block) signals whether this block is the last
   one.  The frame will end after this last block.  It may be followed
   by an optional Content_Checksum (see Section 3.1.1).

3.1.1.2.2.  Block_Type


   The next 2 bits represent the Block_Type.  There are four block
   types:

                       +=======+==================+
                       | Value | Block_Type       |
                       +=======+==================+
                       |   0   |    Raw_Block     |
                       +-------+------------------+
                       |   1   |    RLE_Block     |
                       +-------+------------------+
                       |   2   | Compressed_Block |
                       +-------+------------------+
                       |   3   |     Reserved     |
                       +-------+------------------+

                         Table 10: The Four Block
                                  Types

   Raw_Block:  This is an uncompressed block.  Block_Content contains
      Block_Size bytes.

   RLE_Block:  This is a single byte, repeated Block_Size times.
      Block_Content consists of a single byte.  On the decompression
      side, this byte must be repeated Block_Size times.

   Compressed_Block:  This is a compressed block as described in
      Section 3.1.1.3.  Block_Size is the length of Block_Content,
      namely the compressed data.  The decompressed size is not known,
      but its maximum possible value is guaranteed (see below).

   Reserved:  This is not a block.  This value cannot be used with the
      current specification.  If such a value is present, it is
      considered to be corrupt data, and a compliant decoder must reject
      it.

3.1.1.2.3.  Block_Size


   The upper 21 bits of Block_Header represent the Block_Size.

   When Block_Type is Compressed_Block or Raw_Block, Block_Size is the
   size of Block_Content (hence excluding Block_Header).

   When Block_Type is RLE_Block, since Block_Content's size is always 1,
   Block_Size represents the number of times this byte must be repeated.

   Block_Size is limited by Block_Maximum_Size (see below).

3.1.1.2.4.  Block_Content and Block_Maximum_Size


   The size of Block_Content is limited by Block_Maximum_Size, which is
   the smallest of:

   *  Window_Size

   *  128 KB

   Block_Maximum_Size is constant for a given frame.  This maximum is
   applicable to both the decompressed size and the compressed size of
   any block in the frame.

   The reasoning for this limit is that a decoder can read this
   information at the beginning of a frame and use it to allocate
   buffers.  The guarantees on the size of blocks ensure that the
   buffers will be large enough for any following block of the valid
   frame.

   If the compressed block is larger than the uncompressed one, sending
   the uncompressed block (i.e., a Raw_Block) is recommended instead.

3.1.1.3.  Compressed Blocks



   To decompress a compressed block, the compressed size must be
   provided from the Block_Size field within Block_Header.

   A compressed block consists of two sections: a
   Literals_Section (Section 3.1.1.3.1) and a
   Sequences_Section (Section 3.1.1.3.2).  The results of the two
   sections are then combined to produce the decompressed data in
   Sequence Execution (Section 3.1.1.4).

   To decode a compressed block, the following elements are necessary:

   *  Previous decoded data, up to a distance of Window_Size, or the
      beginning of the Frame, whichever is smaller.  Single_Segment_Flag
      will be set in the latter case.

   *  List of "recent offsets" from the previous Compressed_Block.

   *  The previous Huffman tree, required by Treeless_Literals_Block
      type.

   *  Previous Finite State Entropy (FSE) decoding tables, required by
      Repeat_Mode, for each symbol type (literals length codes, match
      length codes, offset codes).

   Note that decoding tables are not always from the previous
   Compressed_Block:

   *  Every decoding table can come from a dictionary.

   *  The Huffman tree comes from the previous
      Compressed_Literals_Block.

3.1.1.3.1.  Literals_Section_Header


   All literals are regrouped in the first part of the block.  They can
   be decoded first and then copied during Sequence Execution (see
   Section 3.1.1.4), or they can be decoded on the flow during Sequence
   Execution.

   Literals can be stored uncompressed or compressed using Huffman
   prefix codes.  When compressed, an optional tree description can be
   present, followed by 1 or 4 streams.

                      +----------------------------+
                      |  Literals_Section_Header   |
                      +----------------------------+
                      | [Huffman_Tree_Description] |
                      +----------------------------+
                      |        [Jump_Table]        |
                      +----------------------------+
                      |          Stream_1          |
                      +----------------------------+
                      |         [Stream_2]         |
                      +----------------------------+
                      |         [Stream_3]         |
                      +----------------------------+
                      |         [Stream_4]         |
                      +----------------------------+

                      Table 11: Compressed Literals

3.1.1.3.1.1.  Literals_Section_Header


   This field describes how literals are packed.  It's a byte-aligned
   variable-size bit field, ranging from 1 to 5 bytes, using little-
   endian convention.

                    +---------------------+-----------+
                    | Literals_Block_Type |   2 bits  |
                    +---------------------+-----------+
                    |     Size_Format     |  1-2 bits |
                    +---------------------+-----------+
                    |   Regenerated_Size  | 5-20 bits |
                    +---------------------+-----------+
                    |  [Compressed_Size]  | 0-18 bits |
                    +---------------------+-----------+

                     Table 12: Literals_Section_Header

   In this representation, bits at the top are the lowest bits.

   The Literals_Block_Type field uses the two lowest bits of the first
   byte, describing four different block types:

                   +===========================+=======+
                   |    Literals_Block_Type    | Value |
                   +===========================+=======+
                   |     Raw_Literals_Block    |   0   |
                   +---------------------------+-------+
                   |     RLE_Literals_Block    |   1   |
                   +---------------------------+-------+
                   | Compressed_Literals_Block |   2   |
                   +---------------------------+-------+
                   |  Treeless_Literals_Block  |   3   |
                   +---------------------------+-------+

                       Table 13: Literals_Block_Type

   Raw_Literals_Block:  Literals are stored uncompressed.
      Literals_Section_Content is Regenerated_Size.

   RLE_Literals_Block:  Literals consist of a single-byte value repeated
      Regenerated_Size times.  Literals_Section_Content is 1.

   Compressed_Literals_Block:  This is a standard Huffman-compressed
      block, starting with a Huffman tree description.  See details
      below.  Literals_Section_Content is Compressed_Size.

   Treeless_Literals_Block:  This is a Huffman-compressed block, using
      the Huffman tree from the previous Compressed_Literals_Block or a
      dictionary if there is no previous Huffman-compressed literals
      block.  Huffman_Tree_Description will be skipped.  Note that if
      this mode is triggered without any previous Huffman table in the
      frame (or dictionary, per Section 5), it should be treated as data
      corruption.  Literals_Section_Content is Compressed_Size.

   The Size_Format is divided into two families:

   *  For Raw_Literals_Block and RLE_Literals_Block, it's only necessary
      to decode Regenerated_Size.  There is no Compressed_Size field.

   *  For Compressed_Block and Treeless_Literals_Block, it's required to
      decode both Compressed_Size and Regenerated_Size (the decompressed
      size).  It's also necessary to decode the number of streams (1 or
      4).

   For values spanning several bytes, the convention is little endian.

   Size_Format for Raw_Literals_Block and RLE_Literals_Block uses 1 or 2
   bits.  Its value is (Literals_Section_Header[0]>>2) & 0x3.

   Size_Format == 00 or 10:  Size_Format uses 1 bit.  Regenerated_Size
      uses 5 bits (value 0-31).  Literals_Section_Header uses 1 byte.
      Regenerated_Size = Literal_Section_Header[0]>>3.

   Size_Format == 01:  Size_Format uses 2 bits.  Regenerated_Size uses
      12 bits (values 0-4095).  Literals_Section_Header uses 2 bytes.
      Regenerated_Size = (Literals_Section_Header[0]>>4) +
      (Literals_Section_Header[1]<<4).

   Size_Format == 11:  Size_Format uses 2 bits.  Regenerated_Size uses
      20 bits (values 0-1048575).  Literals_Section_Header uses 3 bytes.
      Regenerated_Size = (Literals_Section_Header[0]>>4) +
      (Literals_Section_Header[1]<<4) +
      (Literals_Section_Header[2]<<12).

   Only Stream_1 is present for these cases.  Note that it is permitted
   to represent a short value (for example, 13) using a long format,
   even if it's less efficient.

   Size_Format for Compressed_Literals_Block and Treeless_Literals_Block
   always uses 2 bits.

   Size_Format == 00:  A single stream.  Both Regenerated_Size and
      Compressed_Size use 10 bits (values 0-1023).
      Literals_Section_Header uses 3 bytes.

   Size_Format == 01:  4 streams.  Both Regenerated_Size and
      Compressed_Size use 10 bits (values 0-1023).
      Literals_Section_Header uses 3 bytes.

   Size_Format == 10:  4 streams.  Both Regenerated_Size and
      Compressed_Size use 14 bits (values 0-16383).
      Literals_Section_Header uses 4 bytes.

   Size_Format == 11:  4 streams.  Both Regenerated_Size and
      Compressed_Size use 18 bits (values 0-262143).
      Literals_Section_Header uses 5 bytes.

   Both the Compressed_Size and Regenerated_Size fields follow little-
   endian convention.  Note that Compressed_Size includes the size of
   the Huffman_Tree_Description when it is present.

3.1.1.3.1.2.  Raw_Literals_Block


   The data in Stream_1 is Regenerated_Size bytes long.  It contains the
   raw literals data to be used during Sequence Execution
   (Section 3.1.1.3.2).

3.1.1.3.1.3.  RLE_Literals_Block


   Stream_1 consists of a single byte that should be repeated
   Regenerated_Size times to generate the decoded literals.

3.1.1.3.1.4.  Compressed_Literals_Block and Treeless_Literals_Block


   Both of these modes contain Huffman-coded data.  For
   Treeless_Literals_Block, the Huffman table comes from the previously
   compressed literals block, or from a dictionary; see Section 5.

3.1.1.3.1.5.  Huffman_Tree_Description


   This section is only present when the Literals_Block_Type type is
   Compressed_Literals_Block (2).  The format of
   Huffman_Tree_Description can be found in Section 4.2.1.  The size of
   Huffman_Tree_Description is determined during the decoding process.
   It must be used to determine where streams begin.

     Total_Streams_Size = Compressed_Size
                          - Huffman_Tree_Description_Size

3.1.1.3.1.6.  Jump_Table


   The Jump_Table is only present when there are 4 Huffman-coded
   streams.

   (Reminder: Huffman-compressed data consists of either 1 or 4 Huffman-
   coded streams.)

   If only 1 stream is present, it is a single bitstream occupying the
   entire remaining portion of the literals block, encoded as described
   within Section 4.2.2.

   If there are 4 streams, Literals_Section_Header only provides enough
   information to know the decompressed and compressed sizes of all 4
   streams combined.  The decompressed size of each stream is equal to
   (Regenerated_Size+3)/4, except for the last stream, which may be up
   to 3 bytes smaller, to reach a total decompressed size as specified
   in Regenerated_Size.

   The compressed size of each stream is provided explicitly in the
   Jump_Table.  The Jump_Table is 6 bytes long and consists of three
   2-byte little-endian fields, describing the compressed sizes of the
   first 3 streams.  Stream4_Size is computed from Total_Streams_Size
   minus the sizes of other streams.

     Stream4_Size = Total_Streams_Size - 6
                    - Stream1_Size - Stream2_Size
                    - Stream3_Size

   Note that if Stream1_Size + Stream2_Size + Stream3_Size exceeds
   Total_Streams_Size, the data are considered corrupted.

   Each of these 4 bitstreams is then decoded independently as a
   Huffman-coded stream, as described in Section 4.2.2.

3.1.1.3.2.  Sequences_Section


   A compressed block is a succession of sequences.  A sequence is a
   literal copy command, followed by a match copy command.  A literal
   copy command specifies a length.  It is the number of bytes to be
   copied (or extracted) from the Literals_Section.  A match copy
   command specifies an offset and a length.

   When all sequences are decoded, if there are literals left in the
   Literals_Section, these bytes are added at the end of the block.

   This is described in more detail in Section 3.1.1.4.

   The Sequences_Section regroups all symbols required to decode
   commands.  There are three symbol types: literals length codes,
   offset codes, and match length codes.  They are encoded together,
   interleaved, in a single "bitstream".

   The Sequences_Section starts by a header, followed by optional
   probability tables for each symbol type, followed by the bitstream.

     Sequences_Section_Header
       [Literals_Length_Table]
       [Offset_Table]
       [Match_Length_Table]
       bitStream

   To decode the Sequences_Section, it's necessary to know its size.
   This size is deduced from the size of the Literals_Section:
   Sequences_Section_Size = Block_Size - Literals_Section_Header -
   Literals_Section_Content.

3.1.1.3.2.1.  Sequences_Section_Header


   This header consists of two items:

   *  Number_of_Sequences

   *  Symbol_Compression_Modes

   Number_of_Sequences is a variable size field using between 1 and 3
   bytes.  If the first byte is "byte0":

   *  if (byte0 == 0): there are no sequences.  The sequence section
      stops here.  Decompressed content is defined entirely as
      Literals_Section content.  The FSE tables used in Repeat_Mode are
      not updated.

   *  if (byte0 < 128): Number_of_Sequences = byte0.  Uses 1 byte.

   *  if (byte0 < 255): Number_of_Sequences = ((byte0 - 128) << 8) +
      byte1.  Uses 2 bytes.

   *  if (byte0 == 255): Number_of_Sequences = byte1 + (byte2 << 8) +
      0x7F00.  Uses 3 bytes.

   Symbol_Compression_Modes is a single byte, defining the compression
   mode of each symbol type.

                   +============+======================+
                   | Bit Number |      Field Name      |
                   +============+======================+
                   |    7-6     | Literal_Lengths_Mode |
                   +------------+----------------------+
                   |    5-4     |     Offsets_Mode     |
                   +------------+----------------------+
                   |    3-2     |  Match_Lengths_Mode  |
                   +------------+----------------------+
                   |    1-0     |       Reserved       |
                   +------------+----------------------+

                     Table 14: Symbol_Compression_Modes

   The last field, Reserved, must be all zeroes.

   Literals_Lengths_Mode, Offsets_Mode, and Match_Lengths_Mode define
   the Compression_Mode of literals length codes, offset codes, and
   match length codes, respectively.  They follow the same enumeration:

                      +=======+=====================+
                      | Value |   Compression_Mode  |
                      +=======+=====================+
                      |   0   |   Predefined_Mode   |
                      +-------+---------------------+
                      |   1   |       RLE_Mode      |
                      +-------+---------------------+
                      |   2   | FSE_Compressed_Mode |
                      +-------+---------------------+
                      |   3   |     Repeat_Mode     |
                      +-------+---------------------+

                                 Table 15:
                           Literals_Lengths_Mode,
                             Offsets_Mode, and
                             Match_Lengths_Mode

   Predefined_Mode:  A predefined FSE (see Section 4.1) distribution
      table is used, as defined in Section 3.1.1.3.2.2.  No distribution
      table will be present.

   RLE_Mode:  The table description consists of a single byte, which
      contains the symbol's value.  This symbol will be used for all
      sequences.

   FSE_Compressed_Mode:  Standard FSE compression.  A distribution table
      will be present.  The format of this distribution table is
      described in Section 4.1.1.  Note that the maximum allowed
      accuracy log for literals length code and match length code tables
      is 9, and the maximum accuracy log for the offset code table is 8.
      This mode must not be used when only one symbol is present;
      RLE_Mode should be used instead (although any other mode will
      work).

   Repeat_Mode:  The table used in the previous Compressed_Block with
      Number_Of_Sequences > 0 will be used again, or if this is the
      first block, the table in the dictionary will be used.  Note that
      this includes RLE_Mode, so if Repeat_Mode follows RLE_Mode, the
      same symbol will be repeated.  It also includes Predefined_Mode,
      in which case Repeat_Mode will have the same outcome as
      Predefined_Mode.  No distribution table will be present.  If this
      mode is used without any previous sequence table in the frame (or
      dictionary; see Section 5) to repeat, this should be treated as
      corruption.

3.1.1.3.2.1.1.  Sequence Codes for Lengths and Offsets


   Each symbol is a code in its own context, which specifies Baseline
   and Number_of_Bits to add.  Codes are FSE compressed and interleaved
   with raw additional bits in the same bitstream.

   Literals length codes are values ranging from 0 to 35, inclusive.
   They define lengths from 0 to 131071 bytes.  The literals length is
   equal to the decoded Baseline plus the result of reading
   Number_of_Bits bits from the bitstream, as a little-endian value.

           +======================+==========+================+
           | Literals_Length_Code | Baseline | Number_of_Bits |
           +======================+==========+================+
           |         0-15         |  length  |       0        |
           +----------------------+----------+----------------+
           |          16          |    16    |       1        |
           +----------------------+----------+----------------+
           |          17          |    18    |       1        |
           +----------------------+----------+----------------+
           |          18          |    20    |       1        |
           +----------------------+----------+----------------+
           |          19          |    22    |       1        |
           +----------------------+----------+----------------+
           |          20          |    24    |       2        |
           +----------------------+----------+----------------+
           |          21          |    28    |       2        |
           +----------------------+----------+----------------+
           |          22          |    32    |       3        |
           +----------------------+----------+----------------+
           |          23          |    40    |       3        |
           +----------------------+----------+----------------+
           |          24          |    48    |       4        |
           +----------------------+----------+----------------+
           |          25          |    64    |       6        |
           +----------------------+----------+----------------+
           |          26          |   128    |       7        |
           +----------------------+----------+----------------+
           |          27          |   256    |       8        |
           +----------------------+----------+----------------+
           |          28          |   512    |       9        |
           +----------------------+----------+----------------+
           |          29          |   1024   |       10       |
           +----------------------+----------+----------------+
           |          30          |   2048   |       11       |
           +----------------------+----------+----------------+
           |          31          |   4096   |       12       |
           +----------------------+----------+----------------+
           |          32          |   8192   |       13       |
           +----------------------+----------+----------------+
           |          33          |  16384   |       14       |
           +----------------------+----------+----------------+
           |          34          |  32768   |       15       |
           +----------------------+----------+----------------+
           |          35          |  65536   |       16       |
           +----------------------+----------+----------------+

                     Table 16: Literals Length Codes

   Match length codes are values ranging from 0 to 52, inclusive.  They
   define lengths from 3 to 131074 bytes.  The match length is equal to
   the decoded Baseline plus the result of reading Number_of_Bits bits
   from the bitstream, as a little-endian value.

      +===================+=======================+================+
      | Match_Length_Code |        Baseline       | Number_of_Bits |
      +===================+=======================+================+
      |        0-31       | Match_Length_Code + 3 |       0        |
      +-------------------+-----------------------+----------------+
      |         32        |           35          |       1        |
      +-------------------+-----------------------+----------------+
      |         33        |           37          |       1        |
      +-------------------+-----------------------+----------------+
      |         34        |           39          |       1        |
      +-------------------+-----------------------+----------------+
      |         35        |           41          |       1        |
      +-------------------+-----------------------+----------------+
      |         36        |           43          |       2        |
      +-------------------+-----------------------+----------------+
      |         37        |           47          |       2        |
      +-------------------+-----------------------+----------------+
      |         38        |           51          |       3        |
      +-------------------+-----------------------+----------------+
      |         39        |           59          |       3        |
      +-------------------+-----------------------+----------------+
      |         40        |           67          |       4        |
      +-------------------+-----------------------+----------------+
      |         41        |           83          |       4        |
      +-------------------+-----------------------+----------------+
      |         42        |           99          |       5        |
      +-------------------+-----------------------+----------------+
      |         43        |          131          |       7        |
      +-------------------+-----------------------+----------------+
      |         44        |          259          |       8        |
      +-------------------+-----------------------+----------------+
      |         45        |          515          |       9        |
      +-------------------+-----------------------+----------------+
      |         46        |          1027         |       10       |
      +-------------------+-----------------------+----------------+
      |         47        |          2051         |       11       |
      +-------------------+-----------------------+----------------+
      |         48        |          4099         |       12       |
      +-------------------+-----------------------+----------------+
      |         49        |          8195         |       13       |
      +-------------------+-----------------------+----------------+
      |         50        |         16387         |       14       |
      +-------------------+-----------------------+----------------+
      |         51        |         32771         |       15       |
      +-------------------+-----------------------+----------------+
      |         52        |         65539         |       16       |
      +-------------------+-----------------------+----------------+

                       Table 17: Match Length Codes

   Offset codes are values ranging from 0 to N.

   A decoder is free to limit its maximum supported value for N.
   Support for values of at least 22 is recommended.  At the time of
   this writing, the reference decoder supports a maximum N value of 31.

   An offset code is also the number of additional bits to read in
   little-endian fashion and can be translated into an Offset_Value
   using the following formulas:

     Offset_Value = (1 << offsetCode) + readNBits(offsetCode);
     if (Offset_Value > 3) Offset = Offset_Value - 3;

   This means that maximum Offset_Value is (2^(N+1)) - 1, supporting
   back-reference distance up to (2^(N+1)) - 4, but it is limited by the
   maximum back-reference distance (see Section 3.1.1.1.2).

   Offset_Value from 1 to 3 are special: they define "repeat codes".
   This is described in more detail in Section 3.1.1.5.

3.1.1.3.2.1.2.  Decoding Sequences


   FSE bitstreams are read in reverse of the direction they are written.
   In zstd, the compressor writes bits forward into a block, and the
   decompressor must read the bitstream backwards.

   To find the start of the bitstream, it is therefore necessary to know
   the offset of the last byte of the block, which can be found by
   counting Block_Size bytes after the block header.

   After writing the last bit containing information, the compressor
   writes a single 1 bit and then fills the rest of the byte with zero
   bits.  The last byte of the compressed bitstream cannot be zero for
   that reason.

   When decompressing, the last byte containing the padding is the first
   byte to read.  The decompressor needs to skip the up to 7 bits of
   0-padding as well as the first 1 bit that occurs.  Afterwards, the
   useful part of the bitstream begins.

   FSE decoding requires a 'state' to be carried from symbol to symbol.
   For more explanation on FSE decoding, see Section 4.1.

   For sequence decoding, a separate state keeps track of each literals
   length, offset, and match length code.  Some FSE primitives are also
   used.  For more details on the operation of these primitives, see
   Section 4.1.

   The bitstream starts with initial FSE state values, each using the
   required number of bits in their respective accuracy, decoded
   previously from their normalized distribution.  It starts with
   Literals_Length_State, followed by Offset_State, and finally
   Match_Length_State.

   Note that all values are read backward, so the 'start' of the
   bitstream is at the highest position in memory, immediately before
   the last 1 bit for padding.

   After decoding the starting states, a single sequence is decoded
   Number_Of_Sequences times.  These sequences are decoded in order from
   first to last.  Since the compressor writes the bitstream in the
   forward direction, this means the compressor must encode the
   sequences starting with the last one and ending with the first.

   For each of the symbol types, the FSE state can be used to determine
   the appropriate code.  The code then defines the Baseline and
   Number_of_Bits to read for each type.  The description of the codes
   for how to determine these values can be found in
   Section 3.1.1.3.2.1.

   Decoding starts by reading the Number_of_Bits required to decode
   offset.  It does the same for Match_Length and then for
   Literals_Length.  This sequence is then used for Sequence Execution
   (see Section 3.1.1.4).

   If it is not the last sequence in the block, the next operation is to
   update states.  Using the rules precalculated in the decoding tables,
   Literals_Length_State is updated, followed by Match_Length_State, and
   then Offset_State.  See Section 4.1 for details on how to update
   states from the bitstream.

   This operation will be repeated Number_of_Sequences times.  At the
   end, the bitstream shall be entirely consumed; otherwise, the
   bitstream is considered corrupted.

3.1.1.3.2.2.  Default Distributions


   If Predefined_Mode is selected for a symbol type, its FSE decoding
   table is generated from a predefined distribution table defined here.
   For details on how to convert this distribution into a decoding
   table, see Section 4.1.

3.1.1.3.2.2.1.  Literals Length Codes


   The decoding table uses an accuracy log of 6 bits (64 states).

     short literalsLength_defaultDistribution[36] =
       { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1,
         2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1,
         -1,-1,-1,-1
       };

3.1.1.3.2.2.2.  Match Length Codes


   The decoding table uses an accuracy log of 6 bits (64 states).

     short matchLengths_defaultDistribution[53] =
       { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,
         -1,-1,-1,-1,-1
       };

3.1.1.3.2.2.3.  Offset Codes


   The decoding table uses an accuracy log of 5 bits (32 states) and
   supports a maximum N value of 28, allowing offset values up to
   536,870,908.

   If any sequence in the compressed block requires a larger offset than
   this, it's not possible to use the default distribution to represent
   it.

     short offsetCodes_defaultDistribution[29] =
       { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1,
         1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1
       };

3.1.1.4.  Sequence Execution



   Once literals and sequences have been decoded, they are combined to
   produce the decoded content of a block.

   Each sequence consists of a tuple of (literals_length, offset_value,
   match_length), decoded as described in the
   Sequences_Section (Section 3.1.1.3.2).  To execute a sequence, first
   copy literals_length bytes from the decoded literals to the output.

   Then, match_length bytes are copied from previous decoded data.  The
   offset to copy from is determined by offset_value:

   *  if Offset_Value > 3, then the offset is Offset_Value - 3;

   *  if Offset_Value is from 1-3, the offset is a special repeat offset
      value.  See Section 3.1.1.5 for how the offset is determined in
      this case.

   The offset is defined as from the current position (after copying the
   literals), so an offset of 6 and a match length of 3 means that 3
   bytes should be copied from 6 bytes back.  Note that all offsets
   leading to previously decoded data must be smaller than Window_Size
   defined in Frame_Header_Descriptor (Section 3.1.1.1.1).

3.1.1.5.  Repeat Offsets



   As seen above, the first three values define a repeated offset; we
   will call them Repeated_Offset1, Repeated_Offset2, and
   Repeated_Offset3.  They are sorted in recency order, with
   Repeated_Offset1 meaning "most recent one".

   If offset_value is 1, then the offset used is Repeated_Offset1, etc.

   There is one exception: when the current sequence's literals_length
   is 0, repeated offsets are shifted by 1, so an offset_value of 1
   means Repeated_Offset2, an offset_value of 2 means Repeated_Offset3,
   and an offset_value of 3 means Repeated_Offset1 - 1_byte.

   For the first block, the starting offset history is populated with
   the following values: Repeated_Offset1 (1), Repeated_Offset2 (4), and
   Repeated_Offset3 (8), unless a dictionary is used, in which case they
   come from the dictionary.

   Then each block gets its starting offset history from the ending
   values of the most recent Compressed_Block.  Note that blocks that
   are not Compressed_Block are skipped; they do not contribute to
   offset history.

   During the execution of the sequences of a Compressed_Block, the
   Repeated_Offsets' values are kept up to date, so that they always
   represent the three most recently used offsets.  In order to achieve
   that, they are updated after executing each sequence in the following
   way:

   When the sequence's offset_value does not refer to one of the
   Repeated_Offsets -- when it has value greater than 3, or when it has
   value 3 and the sequence's literals_length is zero -- the
   Repeated_Offsets' values are shifted back one, and Repeated_Offset1
   takes on the value of the offset that was just used.

   Otherwise, when the sequence's offset_value refers to one of the
   Repeated_Offsets -- when it has value 1 or 2, or when it has value 3
   and the sequence's literals_length is non-zero -- the
   Repeated_Offsets are reordered, so that Repeated_Offset1 takes on the
   value of the used Repeated_Offset, and the existing values are pushed
   back from the first Repeated_Offset through to the Repeated_Offset
   selected by the offset_value.  This effectively performs a single-
   stepped wrapping rotation of the values of these offsets, so that
   their order again reflects the recency of their use.

   The following table shows the values of the Repeated_Offsets as a
   series of sequences are applied to them:

   +=======+==========+===========+===========+===========+============+
   |offset_|literals_ | Repeated_ | Repeated_ | Repeated_ |Comment     |
   | value |  length  |  Offset1  |  Offset2  |  Offset3  |            |
   +=======+==========+===========+===========+===========+============+
   |       |          |     1     |     4     |     8     |starting    |
   |       |          |           |           |           |values      |
   +-------+----------+-----------+-----------+-----------+------------+
   |   1114|    11    |    1111   |     1     |     4     |non-repeat  |
   +-------+----------+-----------+-----------+-----------+------------+
   |      1|    22    |    1111   |     1     |     4     |repeat 1; no|
   |       |          |           |           |           |change      |
   +-------+----------+-----------+-----------+-----------+------------+
   |   2225|    22    |    2222   |    1111   |     1     |non-repeat  |
   +-------+----------+-----------+-----------+-----------+------------+
   |   1114|   111    |    1111   |    2222   |    1111   |non-repeat  |
   +-------+----------+-----------+-----------+-----------+------------+
   |   3336|    33    |    3333   |    1111   |    2222   |non-repeat  |
   +-------+----------+-----------+-----------+-----------+------------+
   |      2|    22    |    1111   |    3333   |    2222   |repeat 2;   |
   |       |          |           |           |           |swap 1 & 2  |
   +-------+----------+-----------+-----------+-----------+------------+
   |      3|    33    |    2222   |    1111   |    3333   |repeat 3;   |
   |       |          |           |           |           |rotate 3 to |
   |       |          |           |           |           |1           |
   +-------+----------+-----------+-----------+-----------+------------+
   |      1|    0     |    2221   |    2222   |    1111   |insert      |
   |       |          |           |           |           |resolved    |
   |       |          |           |           |           |offset      |
   +-------+----------+-----------+-----------+-----------+------------+
   |      1|    0     |    2222   |    2221   |    3333   |repeat 2    |
   +-------+----------+-----------+-----------+-----------+------------+

                         Table 18: Repeated_Offsets

3.1.2.  Skippable Frames



                 +==============+============+===========+
                 | Magic_Number | Frame_Size | User_Data |
                 +==============+============+===========+
                 |   4 bytes    |  4 bytes   |  n bytes  |
                 +--------------+------------+-----------+

                         Table 19: Skippable Frames

   Skippable frames allow the insertion of user-defined metadata into a
   flow of concatenated frames.

   Skippable frames defined in this specification are compatible with
   skippable frames in [LZ4].

   From a compliant decoder perspective, skippable frames simply need to
   be skipped, and their content ignored, resuming decoding after the
   skippable frame.

   It should be noted that a skippable frame can be used to watermark a
   stream of concatenated frames embedding any kind of tracking
   information (even just a Universally Unique Identifier (UUID)).
   Users wary of such possibility should scan the stream of concatenated
   frames in an attempt to detect such frames for analysis or removal.

   The fields are:

   Magic_Number:  4 bytes, little-endian format.  Value: 0x184D2A5?,
      which means any value from 0x184D2A50 to 0x184D2A5F.  All 16
      values are valid to identify a skippable frame.  This
      specification does not detail any specific tagging methods for
      skippable frames.

   Frame_Size:  This is the size, in bytes, of the following User_Data
      (without including the magic number nor the size field itself).
      This field is represented using 4 bytes, little-endian format,
      unsigned 32 bits.  This means User_Data can't be bigger than
      (2^(32) -1) bytes.

   User_Data:  This field can be anything.  Data will just be skipped by
      the decoder.

4.  Entropy Encoding



   Two types of entropy encoding are used by the Zstandard format: FSE
   and Huffman coding.  Huffman is used to compress literals, while FSE
   is used for all other symbols (Literals_Length_Code,
   Match_Length_Code, and offset codes) and to compress Huffman headers.

4.1.  FSE



   FSE, short for Finite State Entropy, is an entropy codec based on
   [ANS].  FSE encoding/decoding involves a state that is carried over
   between symbols, so decoding must be done in the opposite direction
   as encoding.  Therefore, all FSE bitstreams are read from end to
   beginning.  Note that the order of the bits in the stream is not
   reversed; they are simply read in the reverse order from which they
   were written.

   For additional details on FSE, see "FiniteStateEntropy" [FSE].

   FSE decoding involves a decoding table that has a power-of-2 size and
   contains three elements: Symbol, Num_Bits, and Baseline.  The base 2
   logarithm of the table size is its Accuracy_Log.  An FSE state value
   represents an index in this table.

   To obtain the initial state value, consume Accuracy_Log bits from the
   stream as a little-endian value.  The next symbol in the stream is
   the Symbol indicated in the table for that state.  To obtain the next
   state value, the decoder should consume Num_Bits bits from the stream
   as a little-endian value and add it to Baseline.

4.1.1.  FSE Table Description



   To decode FSE streams, it is necessary to construct the decoding
   table.  The Zstandard format encodes FSE table descriptions as
   described here.

   An FSE distribution table describes the probabilities of all symbols
   from 0 to the last present one (included) on a normalized scale of
   (1 << Accuracy_Log).  Note that there must be two or more symbols
   with nonzero probability.

   A bitstream is read forward, in little-endian fashion.  It is not
   necessary to know its exact size, since the size will be discovered
   and reported by the decoding process.  The bitstream starts by
   reporting on which scale it operates.  If low4bits designates the
   lowest 4 bits of the first byte, then Accuracy_Log = low4bits + 5.

   This is followed by each symbol value, from 0 to the last present
   one.  The number of bits used by each field is variable and depends
   on:

   Remaining probabilities + 1:  For example, presuming an Accuracy_Log
      of 8, and presuming 100 probabilities points have already been
      distributed, the decoder may read any value from 0 to (256 - 100 +
      1) == 157, inclusive.  Therefore, it must read log_(2)sup(157) ==
      8 bits.

   Value decoded:  Small values use 1 fewer bit.  For example, presuming
      values from 0 to 157, inclusive, are possible, 255 - 157 = 98
      values are remaining in an 8-bit field.  The first 98 values
      (hence, from 0 to 97) use only 7 bits, and values from 98 to 157
      use 8 bits.  This is achieved through the scheme in Table 20:

                  +============+===============+===========+
                  | Value Read | Value Decoded | Bits Used |
                  +============+===============+===========+
                  |   0 - 97   |     0 - 97    |     7     |
                  +------------+---------------+-----------+
                  |  98 - 127  |    98 - 127   |     8     |
                  +------------+---------------+-----------+
                  | 128 - 225  |     0 - 97    |     7     |
                  +------------+---------------+-----------+
                  | 226 - 255  |   128 - 157   |     8     |
                  +------------+---------------+-----------+

                           Table 20: Values Decoded

   Symbol probabilities are read one by one, in order.  The probability
   is obtained from Value Decoded using the formula P = Value - 1.  This
   means the value 0 becomes the negative probability -1.  This is a
   special probability that means "less than 1".  Its effect on the
   distribution table is described below.  For the purpose of
   calculating total allocated probability points, it counts as 1.

   When a symbol has a probability of zero, it is followed by a 2-bit
   repeat flag.  This repeat flag tells how many probabilities of zeroes
   follow the current one.  It provides a number ranging from 0 to 3.
   If it is a 3, another 2-bit repeat flag follows, and so on.

   When the last symbol reaches a cumulated total of
   (1 << Accuracy_Log), decoding is complete.  If the last symbol makes
   the cumulated total go above (1 << Accuracy_Log), distribution is
   considered corrupted.

   Finally, the decoder can tell how many bytes were used in this
   process and how many symbols are present.  The bitstream consumes a
   round number of bytes.  Any remaining bit within the last byte is
   simply unused.

   The context in which the table is to be used specifies an expected
   number of symbols.  That expected number of symbols never exceeds
   256.  If the number of symbols decoded is not equal to the expected,
   the header should be considered corrupt.

   The distribution of normalized probabilities is enough to create a
   unique decoding table.  The table has a size of (1 << Accuracy_Log).
   Each cell describes the symbol decoded and instructions to get the
   next state.

   Symbols are scanned in their natural order for "less than 1"
   probabilities as described above.  Symbols with this probability are
   being attributed a single cell, starting from the end of the table
   and retreating.  These symbols define a full state reset, reading
   Accuracy_Log bits.

   All remaining symbols are allocated in their natural order.  Starting
   from symbol 0 and table position 0, each symbol gets allocated as
   many cells as its probability.  Cell allocation is spread, not
   linear; each successor position follows this rule:

     position += (tableSize >> 1) + (tableSize >> 3) + 3;
     position &= tableSize - 1;

   A position is skipped if it is already occupied by a "less than 1"
   probability symbol.  Position does not reset between symbols; it
   simply iterates through each position in the table, switching to the
   next symbol when enough states have been allocated to the current
   one.

   The result is a list of state values.  Each state will decode the
   current symbol.

   To get the Number_of_Bits and Baseline required for the next state,
   it is first necessary to sort all states in their natural order.  The
   lower states will need 1 more bit than higher ones.  The process is
   repeated for each symbol.

   For example, presuming a symbol has a probability of 5, it receives
   five state values.  States are sorted in natural order.  The next
   power of 2 is 8.  The space of probabilities is divided into 8 equal
   parts.  Presuming the Accuracy_Log is 7, this defines 128 states, and
   each share (divided by 8) is 16 in size.  In order to reach 8, 8 - 5
   = 3 lowest states will count "double", doubling the number of shares
   (32 in width), requiring 1 more bit in the process.

   Baseline is assigned starting from the higher states using fewer
   bits, and proceeding naturally, then resuming at the first state,
   each taking its allocated width from Baseline.

        +----------------+-------+-------+--------+------+-------+
        |  state order   |   0   |   1   |   2    |  3   |   4   |
        +----------------+-------+-------+--------+------+-------+
        |     width      |   32  |   32  |   32   |  16  |   16  |
        +----------------+-------+-------+--------+------+-------+
        | Number_of_Bits |   5   |   5   |   5    |  4   |   4   |
        +----------------+-------+-------+--------+------+-------+
        |  range number  |   2   |   4   |   6    |  0   |   1   |
        +----------------+-------+-------+--------+------+-------+
        |    Baseline    |   32  |   64  |   96   |  0   |   16  |
        +----------------+-------+-------+--------+------+-------+
        |     range      | 32-63 | 64-95 | 96-127 | 0-15 | 16-31 |
        +----------------+-------+-------+--------+------+-------+

                      Table 21: Baseline Assignments

   The next state is determined from the current state by reading the
   required Number_of_Bits and adding the specified Baseline.

   See Appendix A for the results of this process that are applied to
   the default distributions.

4.2.  Huffman Coding



   Zstandard Huffman-coded streams are read backwards, similar to the
   FSE bitstreams.  Therefore, to find the start of the bitstream, it is
   necessary to know the offset of the last byte of the Huffman-coded
   stream.

   After writing the last bit containing information, the compressor
   writes a single 1 bit and then fills the rest of the byte with 0
   bits.  The last byte of the compressed bitstream cannot be 0 for that
   reason.

   When decompressing, the last byte containing the padding is the first
   byte to read.  The decompressor needs to skip the up to 7 bits of
   0-padding as well as the first 1 bit that occurs.  Afterwards, the
   useful part of the bitstream begins.

   The bitstream contains Huffman-coded symbols in little-endian order,
   with the codes defined by the method below.

4.2.1.  Huffman Tree Description



   Prefix coding represents symbols from an a priori known alphabet by
   bit sequences (codewords), one codeword for each symbol, in a manner
   such that different symbols may be represented by bit sequences of
   different lengths, but a parser can always parse an encoded string
   unambiguously, symbol by symbol.

   Given an alphabet with known symbol frequencies, the Huffman
   algorithm allows the construction of an optimal prefix code using the
   fewest bits of any possible prefix codes for that alphabet.

   The prefix code must not exceed a maximum code length.  More bits
   improve accuracy but yield a larger header size and require more
   memory or more complex decoding operations.  This specification
   limits the maximum code length to 11 bits.

   All literal values from zero (included) to the last present one
   (excluded) are represented by Weight with values from 0 to
   Max_Number_of_Bits.  Transformation from Weight to Number_of_Bits
   follows this pseudocode:

     if Weight == 0
       Number_of_Bits = 0
     else
       Number_of_Bits = Max_Number_of_Bits + 1 - Weight

   The last symbol's Weight is deduced from previously decoded ones, by
   completing to the nearest power of 2.  This power of 2 gives
   Max_Number_of_Bits the depth of the current tree.

   For example, presume the following Huffman tree must be described:

                    +===============+================+
                    | Literal Value | Number_of_Bits |
                    +===============+================+
                    |       0       |       1        |
                    +---------------+----------------+
                    |       1       |       2        |
                    +---------------+----------------+
                    |       2       |       3        |
                    +---------------+----------------+
                    |       3       |       0        |
                    +---------------+----------------+
                    |       4       |       4        |
                    +---------------+----------------+
                    |       5       |       4        |
                    +---------------+----------------+

                          Table 22: Huffman Tree

   The tree depth is 4, since its longest element uses 4 bits.  (The
   longest elements are those with the smallest frequencies.)  Value 5
   will not be listed as it can be determined from the values for 0-4,
   nor will values above 5 as they are all 0.  Values from 0 to 4 will
   be listed using Weight instead of Number_of_Bits.  The pseudocode to
   determine Weight is:

     if Number_of_Bits == 0
       Weight = 0
     else
       Weight = Max_Number_of_Bits + 1 - Number_of_Bits

   It gives the following series of weights:

                        +===============+========+
                        | Literal Value | Weight |
                        +===============+========+
                        |       0       |   4    |
                        +---------------+--------+
                        |       1       |   3    |
                        +---------------+--------+
                        |       2       |   2    |
                        +---------------+--------+
                        |       3       |   0    |
                        +---------------+--------+
                        |       4       |   1    |
                        +---------------+--------+

                            Table 23: Weights

   The decoder will do the inverse operation: having collected weights
   of literals from 0 to 4, it knows the last literal, 5, is present
   with a nonzero Weight.  The Weight of 5 can be determined by
   advancing to the next power of 2.  The sum of 2^((Weight-1))
   (excluding 0's) is 15.  The nearest power of 2 is 16.  Therefore,
   Max_Number_of_Bits = 4 and Weight[5] = 16 - 15 = 1.

4.2.1.1.  Huffman Tree Header



   This is a single byte value (0-255), which describes how the series
   of weights is encoded.

   headerByte < 128:  The series of weights is compressed using FSE (see
      below).  The length of the FSE-compressed series is equal to
      headerByte (0-127).

   headerByte >= 128:  This is a direct representation, where each
      Weight is written directly as a 4-bit field (0-15).  They are
      encoded forward, 2 weights to a byte with the first weight taking
      the top 4 bits and the second taking the bottom 4; for example,
      the following operations could be used to read the weights:

        Weight[0] = (Byte[0] >> 4)
        Weight[1] = (Byte[0] & 0xf),
        etc.

      The full representation occupies ceiling(Number_of_Symbols/2)
      bytes, meaning it uses only full bytes even if Number_of_Symbols
      is odd.  Number_of_Symbols = headerByte - 127.  Note that maximum
      Number_of_Symbols is 255 - 127 = 128.  If any literal has a value
      over 128, raw header mode is not possible, and it is necessary to
      use FSE compression.

4.2.1.2.  FSE Compression of Huffman Weights



   In this case, the series of Huffman weights is compressed using FSE
   compression.  It is a single bitstream with two interleaved states,
   sharing a single distribution table.

   To decode an FSE bitstream, it is necessary to know its compressed
   size.  Compressed size is provided by headerByte.  It's also
   necessary to know its maximum possible decompressed size, which is
   255, since literal values span from 0 to 255, and the last symbol's
   Weight is not represented.

   An FSE bitstream starts by a header, describing probabilities
   distribution.  It will create a decoding table.  For a list of
   Huffman weights, the maximum accuracy log is 6 bits.  For more
   details, see Section 4.1.1.

   The Huffman header compression uses two states, which share the same
   FSE distribution table.  The first state (State1) encodes the even-
   numbered index symbols, and the second (State2) encodes the odd-
   numbered index symbols.  State1 is initialized first, and then
   State2, and they take turns decoding a single symbol and updating
   their state.  For more details on these FSE operations, see
   Section 4.1.

   The number of symbols to be decoded is determined by tracking the
   bitStream overflow condition: if updating state after decoding a
   symbol would require more bits than remain in the stream, it is
   assumed that extra bits are zero.  Then, symbols for each of the
   final states are decoded and the process is complete.

4.2.1.3.  Conversion from Weights to Huffman Prefix Codes



   All present symbols will now have a Weight value.  It is possible to
   transform weights into Number_of_Bits, using this formula:

     if Weight > 0
         Number_of_Bits = Max_Number_of_Bits + 1 - Weight
     else
         Number_of_Bits = 0

   Symbols are sorted by Weight.  Within the same Weight, symbols keep
   natural sequential order.  Symbols with a Weight of zero are removed.
   Then, starting from the lowest Weight, prefix codes are distributed
   in sequential order.

   For example, assume the following list of weights has been decoded:

                           +=========+========+
                           | Literal | Weight |
                           +=========+========+
                           |    0    |   4    |
                           +---------+--------+
                           |    1    |   3    |
                           +---------+--------+
                           |    2    |   2    |
                           +---------+--------+
                           |    3    |   0    |
                           +---------+--------+
                           |    4    |   1    |
                           +---------+--------+
                           |    5    |   1    |
                           +---------+--------+

                         Table 24: Decoded Weights

   Sorting by weight and then the natural sequential order yields the
   following distribution:

           +=========+========+================+==============+
           | Literal | Weight | Number_Of_Bits | Prefix Codes |
           +=========+========+================+==============+
           |    3    |   0    |       0        |     N/A      |
           +---------+--------+----------------+--------------+
           |    4    |   1    |       4        |     0000     |
           +---------+--------+----------------+--------------+
           |    5    |   1    |       4        |     0001     |
           +---------+--------+----------------+--------------+
           |    2    |   2    |       3        |     001      |
           +---------+--------+----------------+--------------+
           |    1    |   3    |       2        |      01      |
           +---------+--------+----------------+--------------+
           |    0    |   4    |       1        |      1       |
           +---------+--------+----------------+--------------+

                       Table 25: Sorting by Weight

4.2.2.  Huffman-Coded Streams



   Given a Huffman decoding table, it is possible to decode a Huffman-
   coded stream.

   Each bitstream must be read backward, starting from the end and going
   up to the beginning.  Therefore, it is necessary to know the size of
   each bitstream.

   It is also necessary to know exactly which bit is the last.  This is
   detected by a final bit flag: the highest bit of the last byte is a
   final-bit-flag.  Consequently, a last byte of 0 is not possible.  And
   the final-bit-flag itself is not part of the useful bitstream.
   Hence, the last byte contains between 0 and 7 useful bits.

   Starting from the end, it is possible to read the bitstream in a
   little-endian fashion, keeping track of already used bits.  Since the
   bitstream is encoded in reverse order, starting from the end, read
   symbols in forward order.

   For example, if the literal sequence "0145" was encoded using the
   above prefix code, it would be encoded (in reverse order) as:

                           +=========+==========+
                           |  Symbol | Encoding |
                           +=========+==========+
                           |    5    |   0000   |
                           +---------+----------+
                           |    4    |   0001   |
                           +---------+----------+
                           |    1    |    01    |
                           +---------+----------+
                           |    0    |    1     |
                           +---------+----------+
                           | Padding |  00001   |
                           +---------+----------+

                             Table 26: Literal
                              Sequence "0145"

   This results in the following 2-byte bitstream:

     00010000 00001101



   Here is an alternative representation with the symbol codes separated
   by underscores:

     0001_0000 00001_1_01

   Reading the highest Max_Number_of_Bits bits, it's possible to compare
   the extracted value to the decoding table, determining the symbol to
   decode and number of bits to discard.

   The process continues reading up to the required number of symbols
   per stream.  If a bitstream is not entirely and exactly consumed,
   hence reaching exactly its beginning position with all bits consumed,
   the decoding process is considered faulty.

5.  Dictionary Format



   Zstandard is compatible with "raw content" dictionaries, free of any
   format restriction, except that they must be at least 8 bytes.  These
   dictionaries function as if they were just the content part of a
   formatted dictionary.

   However, dictionaries created by "zstd --train" in the reference
   implementation follow a specific format, described here.

   Dictionaries are not included in the compressed content but rather
   are provided out of band.  That is, the Dictionary_ID identifies
   which should be used, but this specification does not describe the
   mechanism by which the dictionary is obtained prior to use during
   compression or decompression.

   A dictionary has a size, defined either by a buffer limit or a file
   size.  The general format is:

        +==============+===============+================+=========+
        | Magic_Number | Dictionary_ID | Entropy_Tables | Content |
        +==============+===============+================+=========+

                    Table 27: Dictionary General Format

   Magic_Number:  4 bytes ID, value 0xEC30A437, little-endian format.

   Dictionary_ID:  4 bytes, stored in little-endian format.
      Dictionary_ID can be any value, except 0 (which means no
      Dictionary_ID).  It is used by decoders to check if they use the
      correct dictionary.  If the frame is going to be distributed in a
      private environment, any Dictionary_ID can be used.  However, for
      public distribution of compressed frames, the following ranges are
      reserved and shall not be used:

         low range: <= 32767

         high range: >= (2^(31))

   Entropy_Tables:  Follow the same format as the tables in compressed
      blocks.  See the relevant FSE and Huffman sections for how to
      decode these tables.  They are stored in the following order:
      Huffman table for literals, FSE table for offsets, FSE table for
      match lengths, and FSE table for literals lengths.  These tables
      populate the Repeat Stats literals mode and Repeat distribution
      mode for sequence decoding.  It is finally followed by 3 offset
      values, populating repeat offsets (instead of using {1,4,8}),
      stored in order, 4 bytes little-endian each, for a total of 12
      bytes.  Each repeat offset must have a value less than the
      dictionary size.

   Content:  The rest of the dictionary is its content.  The content
      acts as a "past" in front of data to be compressed or
      decompressed, so it can be referenced in sequence commands.  As
      long as the amount of data decoded from this frame is less than or
      equal to Window_Size, sequence commands may specify offsets longer
      than the total length of decoded output so far to reference back
      to the dictionary, even parts of the dictionary with offsets
      larger than Window_Size.  After the total output has surpassed
      Window_Size, however, this is no longer allowed, and the
      dictionary is no longer accessible.

6.  Use of Dictionaries



   Provisioning for use of dictionaries with zstd is being explored.
   See, for example, [DICT-SEC].  The likely outcome will be a registry
   of well-tested dictionaries optimized for different use cases and
   identifiers for each, possibly with a private negotiation mechanism
   for use of unregistered dictionaries.

   To ensure compatibility with the future specification of use of
   dictionaries with zstd payloads, especially with MIME, content
   encoded with the media type registered here should not use a
   dictionary.  The exception to this requirement might be a private
   dictionary negotiation, suggested above, which is not part of this
   specification.

7.  IANA Considerations



   IANA has updated two previously existing registrations and made one
   new registration as described below.

7.1.  The 'application/zstd' Media Type



   The 'application/zstd' media type identifies a block of data that is
   compressed using zstd compression.  The data is a stream of bytes as
   described in this document.  IANA has added the following to the
   "Media Types" registry:

   Type name:  application

   Subtype name:  zstd

   Required parameters:  N/A

   Optional parameters:  N/A

   Encoding considerations:  binary

   Security considerations:  See Section 8 of RFC 8878.

   Interoperability considerations:  N/A

   Published specification:  RFC 8878

   Applications which use this media type:  anywhere data size is an
      issue

   Fragment identifier considerations:  No fragment identifiers are
      defined for this type.

   Additional information:

      Deprecated alias names for this type:  N/A
      Magic number(s):  4 bytes, little-endian format.
         Value: 0xFD2FB528
      File extension(s):  zst
      Macintosh file type code(s):  N/A

   Person & email address to contact for further information:  Yann
      Collet <cyan@fb.com>

   Intended usage:  common

   Restrictions on usage:  N/A

   Author:  Murray S. Kucherawy

   Change Controller:  IETF

   Provisional registration:  no

   For further information:  See [ZSTD]

7.2.  Content Encoding



   IANA has added the following entry to the "HTTP Content Coding
   Registry" within the "Hypertext Transfer Protocol (HTTP) Parameters"
   registry:

   Name:  zstd

   Description:  A stream of bytes compressed using the Zstandard
      protocol

   Reference:  RFC 8878

7.3.  Structured Syntax Suffix



   IANA has registered the following into the "Structured Syntax Suffix"
   registry:

   Name:  Zstandard

   +suffix:  +zstd

   Encoding Considerations:  binary

   Interoperability Considerations:  N/A

   Fragment Identifier Considerations:  The syntax and semantics of
      fragment identifiers specified for +zstd should be as specified
      for 'application/zstd'.

   Security Considerations:  See Section 8 of RFC 8878.

   Contact:  Refer to the author for the 'application/zstd' media type.

   Author/Change Controller:  IETF

7.4.  Dictionaries



   Work in progress includes development of dictionaries that will
   optimize compression and decompression of particular types of data.
   Specification of such dictionaries for public use will necessitate
   registration of a code point from the reserved range described in
   Section 3.1.1.1.3 and its association with a specific dictionary.

   At present, there are no such dictionaries published for public use,
   so this document has made no immediate request of IANA to create such
   a registry.

8.  Security Considerations



   Any data-compression method involves the reduction of redundancy in
   the data.  Zstandard is no exception, and the usual precautions
   apply.

   One should never compress a message whose content must remain secret
   with a message generated by a third party.  Such a compression can be
   used to guess the content of the secret message through analysis of
   entropy reduction.  This was demonstrated in the Compression Ratio
   Info-leak Made Easy (CRIME) attack [CRIME], for example.

   A decoder has to demonstrate capabilities to detect and prevent any
   kind of data tampering in the compressed frame from triggering system
   faults, such as reading or writing beyond allowed memory ranges.
   This can be guaranteed by either the implementation language or
   careful bound checkings.  Of particular note is the encoding of
   Number_of_Sequences values that cause the decoder to read into the
   block header (and beyond), as well as the indication of a
   Frame_Content_Size that is smaller than the actual decompressed data,
   in an attempt to trigger a buffer overflow.  It is highly recommended
   to fuzz-test (i.e., provide invalid, unexpected, or random input and
   verify safe operation of) decoder implementations to test and harden
   their capability to detect bad frames and deal with them without any
   adverse system side effect.

   An attacker may provide correctly formed compressed frames with
   unreasonable memory requirements.  A decoder must always control
   memory requirements and enforce some (system-specific) limits in
   order to protect memory usage from such scenarios.

   Compression can be optimized by training a dictionary on a variety of
   related content payloads.  This dictionary must then be available at
   the decoder for decompression of the payload to be possible.  While
   this document does not specify how to acquire a dictionary for a
   given compressed payload, it is worth noting that third-party
   dictionaries may interact unexpectedly with a decoder, leading to
   possible memory or other resource-exhaustion attacks.  We expect such
   topics to be discussed in further detail in the Security
   Considerations section of a forthcoming RFC for dictionary
   acquisition and transmission, but highlight this issue now out of an
   abundance of caution.

   As discussed in Section 3.1.2, it is possible to store arbitrary user
   metadata in skippable frames.  While such frames are ignored during
   decompression of the data, they can be used as a watermark to track
   the path of the compressed payload.

9.  References



9.1.  Normative References



   [ZSTD]     "Zstandard", <http://www.zstd.net>.

9.2.  Informative References



   [ANS]      Duda, J., "Asymmetric numeral systems: entropy coding
              combining speed of Huffman coding with compression rate of
              arithmetic coding", January 2014,
              <https://arxiv.org/pdf/1311.2540>.

   [CRIME]    "CRIME", June 2018, <https://en.wikipedia.org/w/
              index.php?title=CRIME&oldid=844538656>.

   [DICT-SEC] Handte, F., "Security Considerations Regarding Compression
              Dictionaries", Work in Progress, Internet-Draft, draft-
              handte-httpbis-dict-sec-00, 29 October 2019,
              <https://tools.ietf.org/html/draft-handte-httpbis-dict-
              sec-00>.

   [Err5786]  RFC Errata, "Erratum ID 5786", RFC 8478,
              <https://www.rfc-editor.org/errata/eid5786>.

   [Err6303]  RFC Errata, "Erratum ID 6303", RFC 8478,
              <https://www.rfc-editor.org/errata/eid6303>.

   [FSE]      "FiniteStateEntropy", commit 12a533a, July 2020,
              <https://github.com/Cyan4973/FiniteStateEntropy/>.

   [LZ4]      "LZ4 Frame Format Description", commit ec735ac, January
              2019, <https://github.com/lz4/lz4/blob/master/doc/
              lz4_Frame_format.md>.

   [RFC1952]  Deutsch, P., "GZIP file format specification version 4.3",
              RFC 1952, DOI 10.17487/RFC1952, May 1996,
              <https://www.rfc-editor.org/info/rfc1952>.

   [XXHASH]   "xxHash", <http://www.xxhash.org>.

Appendix A.  Decoding Tables for Predefined Codes



   This appendix contains FSE decoding tables for the predefined
   literals length, match length, and offset codes.  The tables have
   been constructed using the algorithm as given above in Section 4.1.1.
   The tables here can be used as examples to crosscheck that an
   implementation has built its decoding tables correctly.

A.1.  Literals Length Code Table



                +=======+========+================+======+
                | State | Symbol | Number_Of_Bits | Base |
                +=======+========+================+======+
                |   0   |   0    |       0        |  0   |
                +-------+--------+----------------+------+
                |   0   |   0    |       4        |  0   |
                +-------+--------+----------------+------+
                |   1   |   0    |       4        |  16  |
                +-------+--------+----------------+------+
                |   2   |   1    |       5        |  32  |
                +-------+--------+----------------+------+
                |   3   |   3    |       5        |  0   |
                +-------+--------+----------------+------+
                |   4   |   4    |       5        |  0   |
                +-------+--------+----------------+------+
                |   5   |   6    |       5        |  0   |
                +-------+--------+----------------+------+
                |   6   |   7    |       5        |  0   |
                +-------+--------+----------------+------+
                |   7   |   9    |       5        |  0   |
                +-------+--------+----------------+------+
                |   8   |   10   |       5        |  0   |
                +-------+--------+----------------+------+
                |   9   |   12   |       5        |  0   |
                +-------+--------+----------------+------+
                |   10  |   14   |       6        |  0   |
                +-------+--------+----------------+------+
                |   11  |   16   |       5        |  0   |
                +-------+--------+----------------+------+
                |   12  |   18   |       5        |  0   |
                +-------+--------+----------------+------+
                |   13  |   19   |       5        |  0   |
                +-------+--------+----------------+------+
                |   14  |   21   |       5        |  0   |
                +-------+--------+----------------+------+
                |   15  |   22   |       5        |  0   |
                +-------+--------+----------------+------+
                |   16  |   24   |       5        |  0   |
                +-------+--------+----------------+------+
                |   17  |   25   |       5        |  32  |
                +-------+--------+----------------+------+
                |   18  |   26   |       5        |  0   |
                +-------+--------+----------------+------+
                |   19  |   27   |       6        |  0   |
                +-------+--------+----------------+------+
                |   20  |   29   |       6        |  0   |
                +-------+--------+----------------+------+
                |   21  |   31   |       6        |  0   |
                +-------+--------+----------------+------+
                |   22  |   0    |       4        |  32  |
                +-------+--------+----------------+------+
                |   23  |   1    |       4        |  0   |
                +-------+--------+----------------+------+
                |   24  |   2    |       5        |  0   |
                +-------+--------+----------------+------+
                |   25  |   4    |       5        |  32  |
                +-------+--------+----------------+------+
                |   26  |   5    |       5        |  0   |
                +-------+--------+----------------+------+
                |   27  |   7    |       5        |  32  |
                +-------+--------+----------------+------+
                |   28  |   8    |       5        |  0   |
                +-------+--------+----------------+------+
                |   29  |   10   |       5        |  32  |
                +-------+--------+----------------+------+
                |   30  |   11   |       5        |  0   |
                +-------+--------+----------------+------+
                |   31  |   13   |       6        |  0   |
                +-------+--------+----------------+------+
                |   32  |   16   |       5        |  32  |
                +-------+--------+----------------+------+
                |   33  |   17   |       5        |  0   |
                +-------+--------+----------------+------+
                |   34  |   19   |       5        |  32  |
                +-------+--------+----------------+------+
                |   35  |   20   |       5        |  0   |
                +-------+--------+----------------+------+
                |   36  |   22   |       5        |  32  |
                +-------+--------+----------------+------+
                |   37  |   23   |       5        |  0   |
                +-------+--------+----------------+------+
                |   38  |   25   |       4        |  0   |
                +-------+--------+----------------+------+
                |   39  |   25   |       4        |  16  |
                +-------+--------+----------------+------+
                |   40  |   26   |       5        |  32  |
                +-------+--------+----------------+------+
                |   41  |   28   |       6        |  0   |
                +-------+--------+----------------+------+
                |   42  |   30   |       6        |  0   |
                +-------+--------+----------------+------+
                |   43  |   0    |       4        |  48  |
                +-------+--------+----------------+------+
                |   44  |   1    |       4        |  16  |
                +-------+--------+----------------+------+
                |   45  |   2    |       5        |  32  |
                +-------+--------+----------------+------+
                |   46  |   3    |       5        |  32  |
                +-------+--------+----------------+------+
                |   47  |   5    |       5        |  32  |
                +-------+--------+----------------+------+
                |   48  |   6    |       5        |  32  |
                +-------+--------+----------------+------+
                |   49  |   8    |       5        |  32  |
                +-------+--------+----------------+------+
                |   50  |   9    |       5        |  32  |
                +-------+--------+----------------+------+
                |   51  |   11   |       5        |  32  |
                +-------+--------+----------------+------+
                |   52  |   12   |       5        |  32  |
                +-------+--------+----------------+------+
                |   53  |   15   |       6        |  0   |
                +-------+--------+----------------+------+
                |   54  |   17   |       5        |  32  |
                +-------+--------+----------------+------+
                |   55  |   18   |       5        |  32  |
                +-------+--------+----------------+------+
                |   56  |   20   |       5        |  32  |
                +-------+--------+----------------+------+
                |   57  |   21   |       5        |  32  |
                +-------+--------+----------------+------+
                |   58  |   23   |       5        |  32  |
                +-------+--------+----------------+------+
                |   59  |   24   |       5        |  32  |
                +-------+--------+----------------+------+
                |   60  |   35   |       6        |  0   |
                +-------+--------+----------------+------+
                |   61  |   34   |       6        |  0   |
                +-------+--------+----------------+------+
                |   62  |   33   |       6        |  0   |
                +-------+--------+----------------+------+
                |   63  |   32   |       6        |  0   |
                +-------+--------+----------------+------+

                      Table 28: Literals Length Code

A.2.  Match Length Code Table



                +=======+========+================+======+
                | State | Symbol | Number_Of_Bits | Base |
                +=======+========+================+======+
                |   0   |   0    |       0        |  0   |
                +-------+--------+----------------+------+
                |   0   |   0    |       6        |  0   |
                +-------+--------+----------------+------+
                |   1   |   1    |       4        |  0   |
                +-------+--------+----------------+------+
                |   2   |   2    |       5        |  32  |
                +-------+--------+----------------+------+
                |   3   |   3    |       5        |  0   |
                +-------+--------+----------------+------+
                |   4   |   5    |       5        |  0   |
                +-------+--------+----------------+------+
                |   5   |   6    |       5        |  0   |
                +-------+--------+----------------+------+
                |   6   |   8    |       5        |  0   |
                +-------+--------+----------------+------+
                |   7   |   10   |       6        |  0   |
                +-------+--------+----------------+------+
                |   8   |   13   |       6        |  0   |
                +-------+--------+----------------+------+
                |   9   |   16   |       6        |  0   |
                +-------+--------+----------------+------+
                |   10  |   19   |       6        |  0   |
                +-------+--------+----------------+------+
                |   11  |   22   |       6        |  0   |
                +-------+--------+----------------+------+
                |   12  |   25   |       6        |  0   |
                +-------+--------+----------------+------+
                |   13  |   28   |       6        |  0   |
                +-------+--------+----------------+------+
                |   14  |   31   |       6        |  0   |
                +-------+--------+----------------+------+
                |   15  |   33   |       6        |  0   |
                +-------+--------+----------------+------+
                |   16  |   35   |       6        |  0   |
                +-------+--------+----------------+------+
                |   17  |   37   |       6        |  0   |
                +-------+--------+----------------+------+
                |   18  |   39   |       6        |  0   |
                +-------+--------+----------------+------+
                |   19  |   41   |       6        |  0   |
                +-------+--------+----------------+------+
                |   20  |   43   |       6        |  0   |
                +-------+--------+----------------+------+
                |   21  |   45   |       6        |  0   |
                +-------+--------+----------------+------+
                |   22  |   1    |       4        |  16  |
                +-------+--------+----------------+------+
                |   23  |   2    |       4        |  0   |
                +-------+--------+----------------+------+
                |   24  |   3    |       5        |  32  |
                +-------+--------+----------------+------+
                |   25  |   4    |       5        |  0   |
                +-------+--------+----------------+------+
                |   26  |   6    |       5        |  32  |
                +-------+--------+----------------+------+
                |   27  |   7    |       5        |  0   |
                +-------+--------+----------------+------+
                |   28  |   9    |       6        |  0   |
                +-------+--------+----------------+------+
                |   29  |   12   |       6        |  0   |
                +-------+--------+----------------+------+
                |   30  |   15   |       6        |  0   |
                +-------+--------+----------------+------+
                |   31  |   18   |       6        |  0   |
                +-------+--------+----------------+------+
                |   32  |   21   |       6        |  0   |
                +-------+--------+----------------+------+
                |   33  |   24   |       6        |  0   |
                +-------+--------+----------------+------+
                |   34  |   27   |       6        |  0   |
                +-------+--------+----------------+------+
                |   35  |   30   |       6        |  0   |
                +-------+--------+----------------+------+
                |   36  |   32   |       6        |  0   |
                +-------+--------+----------------+------+
                |   37  |   34   |       6        |  0   |
                +-------+--------+----------------+------+
                |   38  |   36   |       6        |  0   |
                +-------+--------+----------------+------+
                |   39  |   38   |       6        |  0   |
                +-------+--------+----------------+------+
                |   40  |   40   |       6        |  0   |
                +-------+--------+----------------+------+
                |   41  |   42   |       6        |  0   |
                +-------+--------+----------------+------+
                |   42  |   44   |       6        |  0   |
                +-------+--------+----------------+------+
                |   43  |   1    |       4        |  32  |
                +-------+--------+----------------+------+
                |   44  |   1    |       4        |  48  |
                +-------+--------+----------------+------+
                |   45  |   2    |       4        |  16  |
                +-------+--------+----------------+------+
                |   46  |   4    |       5        |  32  |
                +-------+--------+----------------+------+
                |   47  |   5    |       5        |  32  |
                +-------+--------+----------------+------+
                |   48  |   7    |       5        |  32  |
                +-------+--------+----------------+------+
                |   49  |   8    |       5        |  32  |
                +-------+--------+----------------+------+
                |   50  |   11   |       6        |  0   |
                +-------+--------+----------------+------+
                |   51  |   14   |       6        |  0   |
                +-------+--------+----------------+------+
                |   52  |   17   |       6        |  0   |
                +-------+--------+----------------+------+
                |   53  |   20   |       6        |  0   |
                +-------+--------+----------------+------+
                |   54  |   23   |       6        |  0   |
                +-------+--------+----------------+------+
                |   55  |   26   |       6        |  0   |
                +-------+--------+----------------+------+
                |   56  |   29   |       6        |  0   |
                +-------+--------+----------------+------+
                |   57  |   52   |       6        |  0   |
                +-------+--------+----------------+------+
                |   58  |   51   |       6        |  0   |
                +-------+--------+----------------+------+
                |   59  |   50   |       6        |  0   |
                +-------+--------+----------------+------+
                |   60  |   49   |       6        |  0   |
                +-------+--------+----------------+------+
                |   61  |   48   |       6        |  0   |
                +-------+--------+----------------+------+
                |   62  |   47   |       6        |  0   |
                +-------+--------+----------------+------+
                |   63  |   46   |       6        |  0   |
                +-------+--------+----------------+------+

                    Table 29: Match Length Code Table

A.3.  Offset Code Table



                +=======+========+================+======+
                | State | Symbol | Number_Of_Bits | Base |
                +=======+========+================+======+
                |   0   |   0    |       0        |  0   |
                +-------+--------+----------------+------+
                |   0   |   0    |       5        |  0   |
                +-------+--------+----------------+------+
                |   1   |   6    |       4        |  0   |
                +-------+--------+----------------+------+
                |   2   |   9    |       5        |  0   |
                +-------+--------+----------------+------+
                |   3   |   15   |       5        |  0   |
                +-------+--------+----------------+------+
                |   4   |   21   |       5        |  0   |
                +-------+--------+----------------+------+
                |   5   |   3    |       5        |  0   |
                +-------+--------+----------------+------+
                |   6   |   7    |       4        |  0   |
                +-------+--------+----------------+------+
                |   7   |   12   |       5        |  0   |
                +-------+--------+----------------+------+
                |   8   |   18   |       5        |  0   |
                +-------+--------+----------------+------+
                |   9   |   23   |       5        |  0   |
                +-------+--------+----------------+------+
                |   10  |   5    |       5        |  0   |
                +-------+--------+----------------+------+
                |   11  |   8    |       4        |  0   |
                +-------+--------+----------------+------+
                |   12  |   14   |       5        |  0   |
                +-------+--------+----------------+------+
                |   13  |   20   |       5        |  0   |
                +-------+--------+----------------+------+
                |   14  |   2    |       5        |  0   |
                +-------+--------+----------------+------+
                |   15  |   7    |       4        |  16  |
                +-------+--------+----------------+------+
                |   16  |   11   |       5        |  0   |
                +-------+--------+----------------+------+
                |   17  |   17   |       5        |  0   |
                +-------+--------+----------------+------+
                |   18  |   22   |       5        |  0   |
                +-------+--------+----------------+------+
                |   19  |   4    |       5        |  0   |
                +-------+--------+----------------+------+
                |   20  |   8    |       4        |  16  |
                +-------+--------+----------------+------+
                |   21  |   13   |       5        |  0   |
                +-------+--------+----------------+------+
                |   22  |   19   |       5        |  0   |
                +-------+--------+----------------+------+
                |   23  |   1    |       5        |  0   |
                +-------+--------+----------------+------+
                |   24  |   6    |       4        |  16  |
                +-------+--------+----------------+------+
                |   25  |   10   |       5        |  0   |
                +-------+--------+----------------+------+
                |   26  |   16   |       5        |  0   |
                +-------+--------+----------------+------+
                |   27  |   28   |       5        |  0   |
                +-------+--------+----------------+------+
                |   28  |   27   |       5        |  0   |
                +-------+--------+----------------+------+
                |   29  |   26   |       5        |  0   |
                +-------+--------+----------------+------+
                |   30  |   25   |       5        |  0   |
                +-------+--------+----------------+------+
                |   31  |   24   |       5        |  0   |
                +-------+--------+----------------+------+

                          Table 30: Offset Code

Appendix B.  Changes since RFC 8478



   The following are the changes in this document relative to RFC 8478:

   *  Applied errata [Err5786] and [Err6303].

   *  Clarified forward compatibility regarding dictionaries.

   *  Clarified application of Block_Maximum_Size.

   *  Added structured media type suffix registration.

   *  Clarified that the content checksum is always 4 bytes.

   *  Clarified handling of reserved and corrupt inputs.

   *  Added fragment identifier considerations to the media type
      registration.

Acknowledgments

   zstd was developed by Yann Collet.

   Felix Handte and Nick Terrell provided feedback that went into this
   revision and RFC 8478.  RFC 8478 also received contributions from
   Bobo Bose-Kolanu, Kyle Nekritz, and David Schleimer.

Authors' Addresses



   Yann Collet
   Facebook
   1 Hacker Way
   Menlo Park, CA 94025
   United States of America

   Email: cyan@fb.com


   Murray S. Kucherawy (editor)
   Facebook
   1 Hacker Way
   Menlo Park, CA 94025
   United States of America

   Email: msk@fb.com